• Title/Summary/Keyword: phenology

Search Result 222, Processing Time 0.028 seconds

A Study on the Evaluation Method of Urban Open Spaces of Seoul with Remote Sensing: Detection of the Ecotone of the Mt. Pukhansan National Park (위성영상자료를 이용한 서울시 도시녹지의 평가기법 연구: 북한산 국립공원 주연부 탐지)

  • 박종화
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.71-81
    • /
    • 1995
  • The purpose of this research were to find ways to detect ecotone between the Mt. Pukhansan National Park and adjacent urban residential areas, to measure the width and size of ecotone around the park, and to investigate temporal change of ecotone around the Park. Normalized Difference Vegetation Index(NDVI) derived from TM data (May of 1985, 1987, and 1993) and the analytical capabilities of GIS were used to investigate the impacts of human activities inside of and outside of the boundary of the park. Major findings of the study can be summarized as follows: First, ecotone around the boundary of the national park could be identified from NDVI-distance curves derived by a series of buffering operations with a GIS. Second, average width of ecotone around the park was nealy doubled during 1985-1993 period. Third, NDVI vaules of the park were about 14 percent higher than those of surrounding areas. Finally, it seems that the expansion of the ecotone of the park is related to heavy trampling of visitors and various types of environmental pollution of the adjacent urban areas.

Simulation of Wheat Yield under Changing Climate in Pakistan (파키스탄 기후변화에 따른 밀생산량 모의)

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.199-199
    • /
    • 2017
  • Sustainable wheat production is of paramount importance for attaining/maintaining the food self-sufficiency status of the rapidly growing nation of Pakistan. However, the average wheat yield per unit area has been dwindling in recent years and the climate-induced variations in rainfall patterns and temperature regimes, during the wheat growth period, are believed to be the reason behind this decline. Crop growth simulation models are powerful tools capable of playing pivotal role in evaluating the climate change impacts on crop yield or productivity. This study was aimed to predict the plausible variations in the wheat yield for future climatic trends so that possible mitigation strategies could be explored. For this purpose, Aquacrop model v. 4.0 was employed to simulate the wheat yield under present and future climatology of the largest agricultural province of Punjab in Pakistan. The data related to crop phenology, management and yield were collected from the experimental plots to calibrate and validate the model. The future climate projections were statistically downscaled from five general circulation models (GCMs) and compared with the base line climate from 1980 to 2010. The model was fed with the projected climate to simulate the wheat yield based on the RCP (representative concentration pathways) 4.5 and 8.5. Under the worst, most likely future scenario of temperature rise and rainfall reduction, the crop yield decreased and water footprint, especially blue, increased, owing to the elevated irrigation demands due to accelerated evapotranspiration rates. The modeling results provided in this study are expected to provide a basic framework for devising policy responses to minimize the climate change impacts on wheat production in the area.

  • PDF

Phenological Characteristics of Rhododendron Species in Temperate Mixed Broad-leaved Forests of Arunachal Himalaya, India

  • Paul, Ashish;Khan, Mohamed Latif;Das, Ashesh Kumar
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.435-450
    • /
    • 2018
  • Phenological events of four Rhododendron tree species (viz. R. arboreum, R. arboreum ssp. delavayi var. delavayi, R. barbatum and R. kesangiae) was monitored in temperate mixed broad-leaved forests of Arunachal Pradesh, India. Phenological events like flower bud formation, flowering, fruit setting, fruit maturing, seed dispersal, leaf bud formation, leaf flushing, and leaf shedding were recorded. Indices i.e., phenophase sequence index (PSI), active phenophasic period of the species (APS) and index of reproductive/vegetative activity (RVA) were also calculated. Present study revealed that bark consistency, growth form and leaf pattern of the studied species have showed variations among the species. Rhododendron species exhibited the phenological events overlapping with other phenophases. The peak flower bud formation was observed during the winter; R. arboreum ssp. delavayi var. delavayi start flowering from December, while the flowering in rest three species exhibited during February to April. Fruit setting occurred during summer to autumn while fruit maturation revealed peak during November. Leaf bud formation illustrated two peaks in April and May, leaf flushing exhibited peak in June, while leaf shedding peaked during October to November. Active phenophasic period of the species were found 12 months, which revealed that species engage in various phenophase activities throughout the year. Phenophase sequence index ranged between 0.8 to 0.9 (PSI ${\geq}0.6$), signifies that species have a sequential arrangement of phenophases. Index of reproductive/vegetative activity of the species exemplified >1, indicate that the reproductive phenophases were dominance over vegetative phenophases. The study have provided substantial insight on the life cycle events of Rhododendron species and ecological approaches for further scientific study with recent climate change and effective management and conservation.

Phenological growth stages of Korean ginseng (Panax ginseng) according to the extended BBCH scale

  • Kim, Yun-Soo;Park, Chol-Soo;Lee, Dong-Yun;Lee, Joon-Soo;Lee, Seung-Hwan;In, Jun-Gyo;Hong, Tae-Kyun
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.527-534
    • /
    • 2021
  • Background: Phenological studies are a prerequisite for accomplishing higher productivity and better crop quality in cultivated plants. However, there are no phenological studies on Panax ginseng that improve its production yield. This study aims to redefine the phenological growth stages of P. ginseng based on the existing Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie (BBCH) scale and proposes a disease control reference. Methods: This study was conducted at the Korea Ginseng Corporation Experiment Station in Gyeonggi province, South Korea. Phenological observations were performed once weekly or twice monthly, based on the developmental stages. The existing BBCH scale with a three-digit code was used to redefine and update P. ginseng's phenological growth codes. Results: The phenological description is divided into eight principal growth stages: three for vegetative growth (perennating bud, aerial shoot, and root development), four for reproductive growth (reproductive organ development, flowering, fruit development, and fruit maturation), and one for senescence according to the extended BBCH scale. A total of 58 secondary growth stages were described within the eight principal growth stages. Under each secondary growth stage, four mesostages are also taken into account, which contains the distinct patterns of the phenological characteristics in ginseng varieties and the process of transplanting seedlings. A practical management program for disease control was also proposed by using the BBCH code and the phenological data proposed in this work. Conclusion: The study introduces an extended BBCH scale for the phenological research of P. ginseng.

Monitoring the phenology of Forsythia velutina, an endemic plant of Korea

  • Sung, Jung-Won;Kim, Geun-Ho;Lee, Kyeong-Cheol;Shim, Yun-Jin;Kang, Shin-Gu
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.4
    • /
    • pp.355-363
    • /
    • 2021
  • Background and objective: This study was conducted on Forsythia velutina, a special plant, in Gyeongsangnam-do Arboretum under the Gyeongsangnam-do Forest Environment Research Institute, which is located in the southern part of Korea. Methods: The research aimed to analyze the flowering characteristics of the plant by calculating the optimal temperature and humidity according to the flowering time and flowering period for 8 years from 2010 to 2017 in order to provide basic data for bioclimate studies of endemic plants. Results: It was observed that the Forsythia velutina showed a life cycle from mid-March and to mid-November. Average growth period was 243 (± 6.5) days. In testing the reliability of a single variable according to the meteorological factors, the Cronbach's Alpha was 0.701, which indicates that the findings were relatively reliable. The average date of flowering was March 16 (SD = 5.8) and the average date on which blossoms fall was March 29 (SD = 5.2). A substantial difference in flowering period was observed from year to year 11 to 23 days, with an average of 16 days (± 4.7). The temperature and humidity in February to March, which affect the flowering, were 2.9-5.5℃, and 66.5-73.0%, respectively, and showed differences every year. Conclusion: The correlation between flowering time and meteorological factors was positive, and the highest daily temperature and average daily temperature had the highest significance. When establishing basic data on plant species for the conservation of endemic plants, the changes in life cycle events and weather conditions are identified. It is believed that it will be helpful in establishing a conservation strategy for the plant species in the future.

Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest (농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로)

  • Yoojin Kang;Yejin Kim ;Jungho Im;Joongbin Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Recent Trends in Blooming Dates of Spring Flowers and the Observed Disturbance in 2014 (최근의 봄꽃 개화 추이와 2014년 개화시기의 혼란)

  • Lee, Ho-Seung;Kim, Jin-Hee;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.396-402
    • /
    • 2014
  • The spring season in Korea features a dynamic landscape with a variety of flowers such as magnolias, azaleas, forsythias, cherry blossoms and royal azaleas flowering sequentially one after another. However, the narrowing of south-north differences in flowering dates and those among the flower species was observed in 2014, taking a toll on economic and shared communal values of seasonal landscape. This study was carried out to determine whether the 2014 incidence is an outlier or a mega trend in spring phenology. Data on flowering dates of forsythias and cherry blossoms, two typical spring flower species, as observed for the recent 60 years in 6 weather stations of Korea Meteorological Administration (KMA) indicate that the difference spanning the flowering date of forsythias, the flower blooming earlier in spring, and that of cherry blossoms that flower later than forsythias was 30 days at the longest and 14 days on an average in the climatological normal year for the period 1951-1980, comparing with the period 1981-2010 when the difference narrowed to 21 days at the longest and 11 days on an average. The year 2014 in particular saw the gap further narrowing down to 7 days, making it possible to see forsythias and cherry blossoms blooming at the same time in the same location. 'Cherry blossom front' took 20 days in traveling from Busan, the earliest flowering station, to Incheon, the latest flowering station, in the case of the 1951-1980 normal year, while 16 days for the 1981-2010 and 6 days for 2014 were observed. The delay in flowering date of forsythias for each time period was 20, 17, and 12 days, respectively. It is presumed that the recent climate change pattern in the Korean Peninsula as indicated by rapid temperature hikes in late spring contrastive to slow temperature rise in early spring immediately after dormancy release brought forward the flowering date of cherry blossoms which comes later than forsythias which flowers early in spring. Thermal time based heating requirements for flowering of 2 species were estimated by analyzing the 60 year data at the 6 locations and used to predict flowering date in 2014. The root mean square error for the prediction was within 2 days from the observed flowering dates in both species at all 6 locations, showing a feasibility of thermal time as a prognostic tool.

Reproductive Phenology of Four Korean Seagrasses, Zostera caespitosa, Z. caulescens, Z. japonica and Z. marina (한국산 해초 포기거머리말, 수거머리말, 애기거머리말과 거머리말의 생물계절학)

  • Lee, Sung-Mi;Lee, Sang-Yong;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.125-133
    • /
    • 2005
  • This study described the phonology and reproductive potential of four species of Korean seagrasses, Zostera caespitosa, Z. caulescem, Z. Japonica and Z. marina. Z. caespitosa and Z. caulescens sampled from a mixed stand at the subtidal area of Yulpo Bay, Geojedo of the South Sea of Korea in November 2002 and August 2003. Z japonica and Z. marina occurred at the depth between the middle intertidal and shallow subtidal (<1m below mean sea level) of Seungbongdo (in Yellow Sea) samples collected in February and October 2003. The sexual reproductive phase of the four Zostera species was apparently different in timing of flowering, reproductive period, fruiting and seed maturing. Z. caespitosa flowered from February to early May $(10-16^{\circ}C)$, and its seed production completed in early May. The reproductive shoots of Z. caulescens began to appear in January $(9^{\circ}C)$, and its flowering followed from February to June $(10-19^{\circ}C)$. The flowers of Z. japonica were observed from July to September $(18-22^{\circ}C)$, and its seeds matured from August to September. The most commonly I marina flowered from April to August $(7-21^{\circ}C)$ and developed into seeds in July. Z. caulescens, the largest plant, had the highest number of seeds per shoot and longest spadix length. Z. marina, which was intermediate In size, recorded the highest reproductive potential. The study indicates that the reproductive phase and potential of the four species of seagrass from Korea are highly related to water temperature, and the populations of these species show a perennial lifespan with a low sexual reproductive input.

Quantification of Temperature Effects on Flowering Date Determination in Niitaka Pear (신고 배의 개화기 결정에 미치는 온도영향의 정량화)

  • Kim, Soo-Ock;Kim, Jin-Hee;Chung, U-Ran;Kim, Seung-Heui;Park, Gun-Hwan;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.2
    • /
    • pp.61-71
    • /
    • 2009
  • Most deciduous trees in temperate zone are dormant during the winter to overcome cold and dry environment. Dormancy of deciduous fruit trees is usually separated into a period of rest by physiological conditions and a period of quiescence by unfavorable environmental conditions. Inconsistent and fewer budburst in pear orchards has been reported recently in South Korea and Japan and the insufficient chilling due to warmer winters is suspected to play a role. An accurate prediction of the flowering time under the climate change scenarios may be critical to the planning of adaptation strategy for the pear industry in the future. However, existing methods for the prediction of budburst depend on the spring temperature, neglecting potential effects of warmer winters on the rest release and subsequent budburst. We adapted a dormancy clock model which uses daily temperature data to calculate the thermal time for simulating winter phenology of deciduous trees and tested the feasibility of this model in predicting budburst and flowering of Niitaka pear, one of the favorite cultivars in Korea. In order to derive the model parameter values suitable for Niitaka, the mean time for the rest release was estimated by observing budburst of field collected twigs in a controlled environment. The thermal time (in chill-days) was calculated and accumulated by a predefined temperature range from fall harvest until the chilling requirement (maximum accumulated chill-days in a negative number) is met. The chilling requirement is then offset by anti-chill days (in positive numbers) until the accumulated chill-days become null, which is assumed to be the budburst date. Calculations were repeated with arbitrary threshold temperatures from $4^{\circ}C$ to $10^{\circ}C$ (at an interval of 0.1), and a set of threshold temperature and chilling requirement was selected when the estimated budburst date coincides with the field observation. A heating requirement (in accumulation of anti-chill days since budburst) for flowering was also determined from an experiment based on historical observations. The dormancy clock model optimized with the selected parameter values was used to predict flowering of Niitaka pear grown in Suwon for the recent 9 years. The predicted dates for full bloom were within the range of the observed dates with 1.9 days of root mean square error.