• Title/Summary/Keyword: phenolic polymers

Search Result 18, Processing Time 0.022 seconds

Gas Separation of Pyrolyzed Polymeric Membranes: Effect of Polymer Precursor and Pyrolysis Conditions

  • Jung, Chul-Ho;Kim, Gun-Wook;Han, Sang-Hoon;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.565-574
    • /
    • 2007
  • In this study, five representative, commercially available polymers, Ultem 1000 polyetherimide, Kapton polyimide, phenolic resin, polyacrylonitrile and cellulose acetate, were used to prepare pyrolyzed polymer membranes coated on a porous {\alpha}-alumina$ tube via inert pyrolysis for gas separation. Pyrolysis conditions (i.e., final temperature and thermal dwell time) of each polymer were determined using a thermogravimetric method coupled with real-time mass spectroscopy. The surface area and pore size distribution of the pyrolyzed materials derived from the polymers were estimated from the nitrogen adsorption/desorption isotherms. Pyrolyzed membranes from polymer precursors exhibited type I sorption behavior except cellulose acetate (type IV). The gas permeation of the carbon/{\alpha}-alumina$ tubular membranes was characterized using four gases: helium, carbon dioxide, oxygen and nitrogen. The polyetherimide, polyimide, and phenolic resin pyrolyzed polymer membranes showed typical molecular sieving gas permeation behavior, while membranes from polyacrylonitrile and cellulose acetate exhibited intermediate behavior between Knudsen diffusion and molecular sieving. Pyrolyzed membranes with molecular sieving behavior (e.g., polyetherimide, polyimide, and phenolic resin) had a $CO_2/N_2$ selectivity of greater than 15; however, the membranes from polyacrylonitrile and cellulose acetate with intermediate gas transport behavior had a selectivity slightly greater than unity due to their large pore size.

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.42-42
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.274-274
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF

Thermal Conductivity and Thermal Expansion Behavior of Pseudo-Unidirectional and 2-Directional Quasi-Carbon Fiber/Phenolic Composites

  • Cho, Donghwan;Choi, Yusong;Park, Jong Kyoo;Lee, Jinyong;Yoon, Byung Il;Lim, Yun Soo
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • In the present paper, a variety of fiber reinforcements, for instance, stabilized OXI-PAN fibers, quasi-carbon fibers, commercial carbon fibers, and their woven fabric forms, have been utilized to fabricate pseudo-unidirectional (pseudo-UD) and 2-directional (2D) phenolic matrix composites using a compression molding method. Prior to fabricating quasi-carbon fiber/phenolic (QC/P) composites, stabilized OXI-PAN fibers and fabrics were heat-treated under low temperature carbonization processes to prepare quasi-carbon fibers and fabrics. The thermal conductivity and thermal expansion/contraction behavior of QC/P composites have been investigated and compared with those of carbon fiber/phenolic (C/P) and stabilized fiber/phenolic composites. Also, the chemical compositions of the fibers used have been characterized. The results suggest that use of proper quasi-carbonization process may control effectively not only the chemical compositions of resulting quasi-carbon fibers but also the thermal conductivity and thermal expansion behavior of quasi-carbon fibers/phenolic composites in the intermediate range between stabilized PAN fiber- and carbon fiber-reinforced phenolic composites.

Synthesis of Lignin-phenol Copolymers Using Horseradish Peroxidase (Horseradish Peroxidase를 이용한 리그닌-페놀계 공중합물 합성)

  • 이성문;여주상;박경문;유영제
    • KSBB Journal
    • /
    • v.15 no.1
    • /
    • pp.22-26
    • /
    • 2000
  • Kraft Lignin which is produced abundantly in pulp industry, was chemically degraded into small oligomers and polymerized using horseradish peroxidase. Lignin acidolysis was optimized by controlling reaction time and HCI concentration. Acidolyzed lignin was polymerized and copolymers of acidolyzed lignin and phenol or p-cresol were synthesized. 70% of kraft lignin was degraded after acidolysis. Number average molecular weight of all lignin polymers were from 8,500 to 14,000 and did not show large difference. Differential scanning calorimeter analysis showed that acidolyzed lignin did not show any melting temparature under $300^{\circ}C$, which indicates that newly synthesized lignin polymers can be used in industry under mild condition.

  • PDF

Phenolic Composition and Antioxidant Activities of Different Solvent Extracts from Pine Needles in Pinus Species

  • Kang, Yoon-Han;Howard, Luke R.
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • The purpose of this study was to investigate the phenolic acid, proanthocyanidin (PAs), and flavonol glycoside contents, as well as the antioxidant activities of pine needle extracts from six species of young pine trees. The extracts were prepared from Section Pinus (Diploxylon): P. densiflora, P. sylvestris, P. pinaster and P. pinea, and Section Strobus (Haploxylon): P. koraiensis and P. strobus. Phenolics were extracted from pine needles with 80% acetone to obtain the soluble free fraction, and insoluble residues were digested with 4 M NaOH to obtain bound ethyl acetate and bound water fractions. Phenolics were analyzed by HPLC, and the hydrophilic antioxidant activity was measured using oxygen radical absorbance capacity (ORAC). Total phenolic and flavonoid contents of the soluble free fraction were higher than those of the bound ethyl acetate and bound water fractions. The main phenolics were monomers and polymers of PAs in the soluble free fraction, and phenolic acids and flavonol glycosides in bound ethyl acetate fraction. Flavonol glycosides found in different species of pine needles were qualitatively similar within fractions, but composition varied among Pinus sections. High levels of kaempferol arabinoside and an unknown compound were present in all Strobus species. The soluble free fraction had the highest antioxidant activity, followed by bound ethyl acetate and bound water fractions.

Synthesis and Applications of Spherical Active Carbon Materials (구형 활성탄소의 합성 및 응용)

  • Kim, Hongkyeong
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.45-49
    • /
    • 2013
  • Spherical active carbon materials have been used for the removal of pollutants in the area of food processing, water treatment, air purification, oral administration. Moreover, they are now expected to make an epoch in the areas of electronics, life science, environmental technology, and so on due to their superior physical properties. Carbon particles should be requested for the edgeless spherical shapes in order to minimize the loss due to the abrasion during the process and/or practical use, but the carbon particles manufactured from petroleum-based pitch do not meet these needs. Nowadays, thus, the spherical active carbon particles carbonized from various spherical polymer beads are studied with thermoplastic and/or thermosetting polymers. In this paper, the synthesis of spherical phenolic beads and furan beads, which are thermosetting polymers, and their carbonization techniques are examined.

  • PDF

Enzymatic Dyeing for Wool (효소를 이용한 wool의 염색)

  • Hoon Sik Shin;Byong Dae Jeon;Artur Cavaco-Paulo;Mitsuo Ueda
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.59-62
    • /
    • 2001
  • Oxydoreductase enzymes such as laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) and horseradish peroxidase (donor: hydrogen peroxide oxidoreductase, HRP, EC 1.11.1.7) can provide novel ways for wool coloration in the face of actual state of the art of these enzymes. HRP has been reported as a very useful enzyme for the synthesis of phenolic polymers2). (omitted)

  • PDF

Preparation of Smectic Layered Polymer Networks Using Side Chain Liquid Crystalline Polymers Having Latent Reactive Monomeric Units

  • Oh, Young-Taek;Kim, Woo-Jin;Seo, Sang-Hyuk;Chang, Ji-Young
    • Macromolecular Research
    • /
    • v.17 no.2
    • /
    • pp.84-90
    • /
    • 2009
  • We prepared side-chain liquid crystalline polymers comprising two monomeric units, one having a mesogenic side group that could form a smectic mesophase and the other having a phenolic group attached to the polymer backbone via a thermally reversible urethane bond. The urethane linkage between the isocyanate and phenol groups was stable at room temperature, but it cleaved to generate an isocyanate group when the temperature was increased. When annealed, the copolymers in their smectic mesophases became insoluble in common organic solvents, suggesting the formation of network structures. XRD analysis showed that the annealed polymers maintained their smectic LC structures. The crosslinking process probably proceeded via the reaction of the dissociated isocyanate groups. Some of the isocyanate groups would have first reacted with moisture in the atmosphere to yield amino groups, which underwent further reaction with other isocyanate groups, resulting in the formation of urea bonds. We presume that only polymer chains in the same layer were crosslinked by the reaction of the isocyanate groups, resulting in the formation of a layered polymer network structure. Reactions between the layers did not occur because of the wide layer spacing.