• Title/Summary/Keyword: phenolic compounds and flavonoids

Search Result 239, Processing Time 0.025 seconds

Total Phenolic Compounds and Flavonoids in the Parts of Artichoke (Cynara scolymus L.) in Viet Nam

  • Thi, Bui Ha Thu;Park, Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Artichoke extracts are widely used alone or in association with other herbs for embittering alcoholic and soft drinks and to prepare herbal teas or herbal medicinal products in Viet Nam. The objective of this paper was a screening of flavonoids and total phenolic compounds content in the parts of artichoke (Cynara scolymus L.) as flowers, leaves, roots, trunks, stumps, The total phenolic compounds and flavonoids in the parts of artichoke were extracted among 3 extraction methods as methanol extraction (EM1), mixing methanol and water method (EM2) and water extraction method (EM3). Total phenolic compounds and flavonoids were determined by UV/VIS, HPLC techniques. The apigenin 7-O-glucosides, cynarin, narirutin, gallic acid, caffeic acid were found as the main flavonoids constituents in all parts of artichoke. It showed that value of total phenolic compounds and flavonoids by EM3 were higher than that of total phenolic compounds and flavonoids by EM1 and EM2. Furthermore, the results of this study revealed that total phenolic compounds and flavonoids, obtained by these convenient extraction methods, may show the quick efficacy of artichoke in all respects of their quality and quantity.

An Overview on Plant Derived Phenolic Compounds and Their Role in Treatment and Management of Diabetes

  • Deka, Himangshu;Choudhury, Ananta;Dey, Biplab Kumar
    • Journal of Pharmacopuncture
    • /
    • v.25 no.3
    • /
    • pp.199-208
    • /
    • 2022
  • Objectives: In recent decades, the trend for treating diabetes mellitus (DM) has shifted toward alternative medicines that are obtained from plant sources. Existing literature suggests that phenolic compounds derived from plants possess promising health-promoting properties. This study aimed to discuss the role of plant-derived phenolic compounds in the effective treatment and management of diabetes. Methods: Information about plant secondary metabolites, phenolic compounds, and their role in the treatment and management of diabetes was collected from different databases, such as Pubmed, ScienceDirect, Scopus, and Google Scholar. Keywords like secondary metabolites, phenolic compounds, simple phenol, flavonoids, lignans, stilbenes, and diabetes were searched. Research and review articles with relevant information were included in the study. Results: Anti-diabetic studies of the four major classes of phenolic compounds were included in this review. The plant-derived phenolic compounds were reported to have potent anti-diabetic activities. However, each class of phenolic compounds was found to behave differently according to various mechanisms. Conclusion: The obtained results suggest that phenolic compounds derived from natural sources display promising anti-diabetic activities. Based on the available information, it can be concluded that phenolic compounds obtained from various natural sources play key roles in the treatment and management of diabetes.

The Nitrite Scavenging and Electron Donating Ability of Phenolic Compounds (페놀성 화합물의 아질산염 소거 및 전자공여 작용)

  • Kang, Yoon-Han;Park, Yong-Kon;Lee, Gee-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.232-239
    • /
    • 1996
  • Phenolic compounds are known to inhibit the nitrosation or oxidation reaction. In the present work, the effects of phenolic compounds including phenolic acids and flavonoids on the nitrite-scavenging and electron donating ability were tested as scavenger of nitrite which is believed to participate in the formation of N-nitroso compounds and investigated as electron donator. The nitrite scavenging ability appeared in all the phenolic acids and showed the highest value at PH 1.2. Among the Phenolic compounds, phenolic acids showed higher nitrite-scavenging action than some flavonoids. Futhermore, the nitrite scavenging action of phenolic compounds was pH dependent highest at pH 1.2 and lowest at pH 6.0. The electron donating ability (EDA) by reduction of ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) among hydroxybenzoic acids was in the decreasing order of gallic acid, gentisic acid, syringic acid, protocatechuic acid, salicylic acid, vanillic acid, benzoic acid and p-hydroxybenzoic acid. EDA of hydroxycinnamic acids was in the decreasing order of hydrocaffeic acid, caffeic acid, ferulic acid, p-coumaric acid and trans-cinnamic acid. EDA of flavonoids was in the decreasing order of (+)catechin, rutin, quercetin, naringin and hesperidin. Other phenolic compounds were significantly high in electron donating abilities.

  • PDF

Inhibitory Activity of IL-6 Production by Flavonoids and Phenolic Compounds from Geranium thunbergii

  • Liu, Qing-He;Woo, Eun-Rhan
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.16-20
    • /
    • 2008
  • Three flavonoids (1 - 3) and three phenolic compounds (4 - 6) were isolated from the whole plant of Geranium thunbergii Sieb. et Zucc (Geraniaceae). Their structures were determined by chemical and spectral analysis. These compounds were examined for the inhibitory activity of IL-6 production in $TNF-{\alpha}$ stimulated MG-63 cell. Among the isolated compounds, gallic acid (4) and gallic acid methyl ester (6) showed potent inhibitory activity.

Phenolic Compounds in Plant Foods: Chemistry and Health Benefits

  • Naczk, Marian;Shahidi, Fereidoon
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.200-218
    • /
    • 2003
  • Phenolic compounds in food and plant materials belong to the simple phenols, phenolic acids, coumarins, flavonoids, stilbenes, tannins, lignans and lignins, all of which are considered as secondary plant metabolites. These compounds may be synthesized by plants during normal development or in response to stress conditions. Phenolics are not distributed uniformly in plants. Insoluble phenolics are components of cell walls while soluble ones are present in vacuoles. A cursory account of phenolics of cereals, beans, pulses, fruits, vegetables and oilseeds is provided in this overview. The information on the bioavailability and absorption of plant phenolics remains fragmentary and diverse. Pharmacological potentials of food phenolics ave extensively evaluated. However, there are many challenges that must be overcome in order to fully understand both the function of phenolics in plant as well as their health effects.

Optimization of Blanching Process of Cirsium setidens and Influence of Blanching on Antioxidant Capacity (참취 데치기 최적 공정 확립과 추출물의 항산화 특성 변화)

  • Jo, Hyeon Seon;Ha, Yoo Jin;Kim, Yeon Tae;Kang, Gil Nam;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.173-182
    • /
    • 2017
  • This study was conducted to investigate the change of Aaster scaber antioxidative activity, total phenolic compounds and flavonoids during the blanching processes. With two parameters such as blanching time and temperature, response surface methodology and central composite design was used to study the combined effect of blanching time (90 to 162 sec) and blanching temperature (75 to $99^{\circ}C$). We found that antioxidative activity, total phenolic compounds and flavonoids during the blanching processes were influenced by blanching temperature and time. Within process condition, total phenolic compounds and flavonoids were extracted 3.00 - 35.48 mg/g and 2.35 - 8.38 mg/g, respectively. DPPH radical scavenging activity was 42.10 - 67.14%. The change of total phenolic compounds, flavonoids, and DPPH radical scavenging activity was dependent of blanching temperature more than time. The total phenolic compounds was increased as temperature rise, but flavonoids not. However, DPPH radical scavenging activity was increased during the blanching process.

Phenolic Compounds from Frullania nisquallensis

  • Kim, Youn-Chul;Kingston, David G.I.
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.3
    • /
    • pp.248-252
    • /
    • 1995
  • Five phenolic compounds were isolated from the MeCOEt extract of Frullania nisquallensis (Jubulaceae), namely methyl 2,4-dihydroxy-3,6-dimethylbenzoate, methyl 2,4-dihydroxy-6-methylbenzoate, acacetin, betuletol, and pectolinaringenin. Revised ${13}^C-NMR$ data of methyl 2,4-dihydroxy-6-methylbenzoate and betuletol are reported.

  • PDF

Heptatriacontanol and Phenolic Compounds from Halochris hispida

  • Gohar, Ahmed A.
    • Natural Product Sciences
    • /
    • v.7 no.3
    • /
    • pp.68-71
    • /
    • 2001
  • The phytochemical investigation of Halocharis hispida revealed the presence of 1-heptatriacontanol, ${\beta}-sitosterol$, ${\beta}-sitosterol-3-O-glucoside$, kaempferol, vitexin and isorhamnetin-3-O-galactoside in addition to vanillic, ferulic, isoferulic, syringic and caffeic acids. The different isolated compounds were identified by different physical, chemical, chromatographic and/or spectral methods.

  • PDF

Antioxidative Activity of Phenolic Compounds in Roasted Safflower (Carthamus tinctorius L.) Seeds

  • Kang, Ga-Hwa;Chang, Eun-Ju;Park, Sang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.221-225
    • /
    • 1999
  • Antioxidative compounds contained in roasted safflower seeds were investigated. Six phenolic compounds, N-feruloylserotonin, N-(p-coumaroyl) serotonin, matairesinol, 8'-hydroxyarctigenin, acacetin 7-Ο-β-D-glucoside(tilianine) and acacetin were isolated and identified from the extract of seeds. The inhibitory effects of six phenolic compounds on 1,1-dipheny1-2-picrylhydrazyl(DPPH) radical and lipid peroxidation induced by H₂O₂/FeSO₄in rat liver microsomes were determined. Two serotonins showed more potent DPPH radical scavenging activity, and a stronger inhibitory effect on the lipid peroxidation than that of α-tocopherol. In addition, acacetin and matairesinol also considerably inhibited lipid peroxidation, while 2-hydroxy-arctigenin and tilianine were inactive. These results suggest that phenolic compounds, including serotonins, lignans and flavonoids in the roasted safflower seeds can be used as potential dietary natural antioxidants.

  • PDF

Transgenic Lettuce Expressing Chalcone Isomerase Gene of Chinese Cabbage Increased Levels of Flavonoids and Polyphenols

  • Han, Eun-Hyang;Lee, Ji-Sun;Lee, Jae-Woong;Chung, In-Sik;Lee, Youn-Hyung
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.467-473
    • /
    • 2011
  • Flavonoid are large group of the polyphenolic compounds which are distinguished by an aromatic or phenolic ring structure and the phenolic compounds are induced by microbial infection, ultraviolet radiation, temperature and chemical stress. They are known for their antioxidant activity, anti-allergic, anti-inflammatory, anti-microbial and anti-cancer activities. In this study, changes in flavonoid content were investigated using heterologous chalcone isomerase (CHI) expression system. Also, phenolic compounds level was measured to examine the relation between flavonoids and phenols contents. Explants of lettuce (Lactuca sativa L.) were transformed with Agrobacterium tumefaciens LBA 4404 strain containing pFLH-CHI (derived from pPZP2Ha3) vector constructed with CHI gene from Brassica rapa. The putative transgenic plants were confirmed by genomic DNA PCR analysis. Also the transcription levels of the gene were analyzed by semi-quantitative RT-PCR with gene specific primers. The total flavonoid contents were increased at $T_0$ and $T_1$ generations over 1.4 and 4.0 fold, respectively. Total phenol contents also increased at $T_1$ generation. These results indicate that CHI gene plays an important role to regulate the accumulation of flavonoids and its component changes.