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Objectives: In recent decades, the trend for treating diabetes mellitus (DM) has shifted 
toward alternative medicines that are obtained from plant sources. Existing literature sug-
gests that phenolic compounds derived from plants possess promising health-promoting 
properties. This study aimed to discuss the role of plant-derived phenolic compounds in 
the effective treatment and management of diabetes.
Methods: Information about plant secondary metabolites, phenolic compounds, and their 
role in the treatment and management of diabetes was collected from different data-
bases, such as Pubmed, ScienceDirect, Scopus, and Google Scholar. Keywords like sec-
ondary metabolites, phenolic compounds, simple phenol, flavonoids, lignans, stilbenes, 
and diabetes were searched. Research and review articles with relevant information were 
included in the study. 
Results: Anti-diabetic studies of the four major classes of phenolic compounds were in-
cluded in this review. The plant-derived phenolic compounds were reported to have potent 
anti-diabetic activities. However, each class of phenolic compounds was found to behave 
differently according to various mechanisms. 
Conclusion: The obtained results suggest that phenolic compounds derived from natural 
sources display promising anti-diabetic activities. Based on the available information, it 
can be concluded that phenolic compounds obtained from various natural sources play 
key roles in the treatment and management of diabetes. 
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INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic illness char-
acterized by an increase in blood glucose, also known as hy-
perglycemia, and is currently an epidemic affecting millions 
of individuals worldwide. According to a 2017 report from the 
International Diabetes Federation, 451 million people world-
wide have diabetes, and that number is expected to climb to 693 
million by 2045 [1, 2]. Diabetes mellitus is classified mainly into 
2 common classes: type 1 diabetes mellitus (T1DM) and type 2 
diabetes mellitus (T2DM). T1DM is insulin-dependent diabetes 
that occurs due to damaged pancreatic beta cells, which results 
in insufficient insulin production in the body. T2DM is non-
insulin dependent and is associated with insulin resistance by 
the liver and other peripheral tissues [3, 4]. The rising incidence 

of diabetes around the world is a reason for concern, both in 
terms of morbidity and rising healthcare costs [5]. The litera-
ture states that the synthetic drugs that have been employed 
for the treatment and management of diabetes have many side 
effects. Some common side effects include hypoglycemia, gas-
trointestinal disturbance, and an increase in bad cholesterol. 
Some patients also report thrombocytopenia, lactic acidosis, 
leucopenia, macular edema, and liver failure [6]. Therefore, the 
DM epidemic creates a need for effective alternative treatments 
that can contribute to the management of chronic diseases like 
diabetes [7].

Most of the therapeutically active plant-derived phyto-
constituents are reported as secondary metabolites, which 
are generated from the plant’s primary metabolic pathways. 
Albrecht Kossel, Nobel Laureate in Physiology or Medicine in 
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1910, was the first to identify and define the idea of secondary 
metabolites. Secondary metabolites have been used by different 
communities as a principal component of traditional medicine 
against various diseases and ailments. These secondary metabo-
lites protect the plants from various microbial attacks and have 
potent medicinal properties. Based on their chemical struc-
tures, secondary metabolites are categorized into several classes, 
such as phenolics, alkaloids, saponins, terpenes, lipids, and car-
bohydrates [8]. Among these compounds, the phenolic group 
attracts considerable interest as the most promising secondary 
metabolites for the treatment of several diseases, including 
diabetes. These phenolic compounds are mainly produced by 
plants through numerous metabolic pathways, such as the shi-
kimate and acetate pathways [9]. Besides playing a major role in 
plant defense mechanisms, phenolic compounds have several 
functions, such as facilitated pollination and coloring for cam-
ouflage [10]. Plant-derived phenolic compounds have been the 

subject of study for many decades, as these compounds are re-
ported to have numerous health benefits. For example, querce-
tin has an anti-inflammatory action, naringenin has insecticidal 
effects, and silybin has been reported as an anti-hepatotoxic [11, 
12]. Based on their structures, phenolic compounds are broadly 
classified as simple phenolics/phenolic acids, flavonoids, stil-
benes, and lignans. Compounds that have only one phenolic 
ring are identified as simple phenols, whereas compounds 
with more than one phenolic ring are considered polyphenols. 
Considering the information above, the present study has been 
designed to give an overview of phenolic compounds and their 
roles in the treatment and management of diabetes mellitus.

MATERIALS AND METHODS

In this review, articles on the role of phenolic compounds 
in the treatment and management of diabetes were incorpo-

Figure 1. Flow chart of the study selec-
tion process.
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rated. A literature search was conducted to identify the relevant 
articles associated with plant secondary metabolites, phenolic 
compounds, and the anti-diabetic activity of the phenolic com-
pounds through several search engines, such as Pubmed, Scien-
ceDirect, Scopus, and Google Scholar. The keywords used for 
the search were secondary metabolites, phenolic compounds, 
simple phenol, flavonoids, lignans, stilbenes, and diabetes. Most 
of the review articles related to phenolic compounds and their 
ability to act as diabetes treatments from 2010 onwards were 
included. All duplicate articles, abstracts, articles with poor 
correlation with the study’s objective, and articles written in a 
language other than English were excluded. The overview of the 
method is presented in Fig. 1.

RESULTS

1. Phenolic acids

Phenolic acids (Pas) are aromatic carboxylic acids. They are 
one of the most common bioactive compounds that occur in 
various plants, and they possess a minimum of one carboxylic 
acid group in the phenol ring [13]. Phenolic acids are further 
subdivided into hydroxyl benzoic acid, which contains seven 
carbon atoms, and hydroxyl cinnamic acid, which contains nine 
carbon atoms. Some examples of phenolic acids are caffeic, fe-
rulic, p-coumaric, and sinapic acids. Their roles in the manage-
ment of diabetes are discussed below [14].

1) Chlorogenic acid (CGA) 
CGA is a group of phenolic secondary metabolites gener-

ated by various plant species. It is one of the most ubiquitous 
phenolic acids typically seen in human diets. Coffee is one of 
the richest sources of CGA, though it is also found in various 
vegetables and fruits [15]. CGAs obtained from various plant 
sources were reported to have favorable anti-diabetic effects. 
Many researchers have discussed the possible mechanism for its 
anti-diabetic activity. A recent investigation conducted by Ong 
et al. [16] on Leprdb/db mice explored the pathways through 
which CGA exerts anti-diabetic effects. Their study suggested 
that CGA stimulated glucose uptake by the skeletal muscle cells 
through the activation of the 5’ adenosine monophosphate-
activated protein kinase (AMPK) pathway. The authors also 
found that 2 weeks of treatment with CGA showed inhibitory 
effects on glucose production in hepatic cells, which resulted in 
reduced plasma blood glucose levels, improved insulin sensi-

tivity, and glucose tolerance [16]. In the oral glucose tolerance 
test, CGA was found to help reduce the plasma glucose peak. 
Similarly, CGA also produce inhibitory effects on α-amylase 
and α-glucosidase in a dose-dependent manner [17-19]. These 
studies show the potential use of CGA as a preferred compound 
for lowering the risk of T2DM.

2) Ellagic acid (EA) 
EA is a polyphenolic compound mostly found in fruits and 

nuts. Several in-vitro and in vivo studies established that the 
administration of EA can induce significant anti-diabetic ef-
fects. Amin and Arbid [20] demonstrated that a combination 
treatment with repaglinide (0.5 mg/kg) and EA (10 mg/kg) for 
2 weeks improved insulin signaling, lipid profiles, and glucose 
balance in insulin-resistant type 2 diabetic albino rats. In anoth-
er study, EA treatment in female rats for 28 days at a dose of 50 
mg/kg/day reduced blood glucose levels and further activated 
the insulin signaling pathways in the liver, which was indicated 
by the increased phosphorylated Akt levels [21]. EA was also 
found to improve insulin release from glucose-induced isolated 
mouse islet cells. Based on the oral glucose tolerance test per-
formed by Fatima et al. [22] on type 2 diabetic rats treated with 
EA, it was found that a dose of 25 mg/kg showed no significant 
changes; however, doses of 50 mg/kg and 100 mg/kg improved 
glucose tolerance.

3) Caffeic acid (CA) 
CA is a dietary hydroxycinnamic acid that is derived mostly 

from the secondary metabolism of plants, such as olives, coffee 
beans, fruits, potatoes, carrots, and propolis. Like the other phe-
nolic acids, CA participates in defending plants against herbi-
vores, pests, and microbial growth, and protects the leaves from 
UV radiation [23]. CA is also reported to have numerous phar-
macological effects, including anti-diabetic activity. CA (12.5 
µM) was found to improve glucose metabolism by inhibiting 
gluconeogenesis and enhancing glycogenesis in tumor necrosis 
factor α (TNFα)- treated insulin-resistant mouse hepatocytes 
[24]. In another study, the administration of CA (50 mg/kg) in 
alloxan-induced type 1 diabetic mice also caused a reduction in 
fasting blood glucose levels [25].

4) Gallic acid (GA)
Gallic acid (GA) is another common phenolic acid that 

is found in various fruits and medicinal plants. It contains a 
number of health-promoting properties and shows promis-
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Table 1. Some example of phenolic compounds and their anti-diabetic mechanism

Class of phenolics Sources Structure Mechanism References

Phenolic acids

   Chlorogenic acid Coffee, tea

HO

HO

OH

CO2H

O

O

OH

OH

Activate AMPK,  
Inhibit α-glucosidase,  
↑ Glucose uptake 

[16]

   Ellagic acid Pomegranates, grapes
O

O O

O

OH

HO

OH

OH
↑ Insulin signaling
↑ Glucose transporter

[20]

   Caffeic acid Coffee, tea

OH

O

HO

HO

↑ Glucokinase activity,  
↓ Glucose-6-phosphatase

[40]

   Gallic acid Pomegranates, oak bark

OH

HO OH

O OH ↑ Glucose absorption
↑ Phosphatidylinositol-3 kinase, 

Akt/protein kinase B

[27]

Flavonoids

   Quercetin Fennel, tea

O

OH

OH

OH

OOH

HO

↑ Glycogen synthase [41]

   Genistein Soy food

O

OH

HO

O
OH ↑ cAMPsignalling 

↑ PKA activation
[31, 32]

   Kaempferol Spinach, dill

O

OCH3OCH3

H3CO

H3CO

OCH3 O

↓ Apoptosis, ↓ caspase-3 [33]

   Luteolin Celery, boccoli

O

O

OH

OH

OH

HO

↑NF-κB pathway [34]
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ing effectiveness against gastrointestinal, cognitive, metabolic, 
and cardiovascular diseases [26]. GA was studied for its hypo-
glycemic effects on glucose absorption in an insulin-resistant 
cell culture model, which improved the glucose absorption 
capacity by 19.2% at a concentration of 6.25 g/mL in insulin-
resistant FL83B mouse hepatocytes. In diabetic rats fed a high 
fructose diet, GA treatment for 4 weeks at a dose of 10-30 mg/
kg increased the expression of hepatic insulin signaling pro-
teins like phosphatidylinositol-3 kinase, Akt/protein kinase B, 
insulin receptor substrate 1, and glucose transporter 2 [27]. The 
complementary effects of GA has been studied by Oboh et al. 
[28], who observed that the combined administration of GA at 
a dose of 50 mg/kg with metformin and acarbose significantly 
elevated the α-amylase and α-glucosidase inhibitory activity of 

the two drugs in streptozotocin-induced diabetic rats. 

2. Flavonoids

Flavonoids are the most prevalent and well-studied class of 
polyphenols. Flavonoids are available in 4,000 different variet-
ies and are mostly found in medicinal plants, fruits, vegetables, 
nuts, seeds, stems, flowers, and tea [29]. Flavonoids have two 
phenolic rings (A and B rings) joined together by three carbon 
atoms to produce a pyran ring (the heterocyclic C ring contain-
ing oxygen) with a C6-C3-C6 skeletal structure. Flavonoids are 
separated into six subclasses based on the degree of oxidation of 
the core heterocycle. These subclasses include flavanones, iso-
flavones, flavonols, flavones, flavan-3-ols, and anthocyanidins 

Table 1. Continued

Class of phenolics Sources Structure Mechanism References

   Tangeretin Peel

OO

O

O
O

O O

Activate AMPK pathway [35]

   Wogonin Scutellaria radix
O

OCH3

HO

OH O

Anti-adipogenic effect [36]

   Chrysin Propolis, honey
OHO

OH O

↑PPAR α & MAPK pathways 
↓TNF-α

[37]

   Rutin Grapes, lemons 

O

O

OH

HO

OH O

OH

O

O

HO

HO

HO
OH OH

HO OH

Inhibit α-glucosidase & 
α-amylase

↑Hexokinase activity
↓Decrease G6Pase, PEPCK, 

glycogen phosphorylase

[38]

Stilbens

   Resveratrol Grapes, barriers

HO

OH

OH Activation of AMPK, SIRT1,  
inhibition of (PTP) 1B

[39]

↑ indicating increase or improvement, ↓ indicating decrease or reduction.
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[30]. Flavonoids, such as quercetin, naringin, hesperidin, epi-
gallocatechin gallate, baptigenin, myricetin, and anthocyanins, 
possess powerful anti-diabetic activities. The reported mecha-
nisms are shown in Table 1 [16, 20, 27, 31-41].

1) Quercetin
Quercetin dihydrate (C15H10O7) is a flavonoid found pri-

marily in fennel, tea leaves, almonds, and lovage [42]. In the 
literature, various mechanisms have been reported that are 
responsible for the anti-diabetic activity of quercetin. In one of 
the studies, quercetin (25-50 M) extracted from berries had a 
similar anti-diabetic activity to the synthetic drug by inducing 
an insulin-independent AMPK pathway that slowed adenosine 
diphosphate oxygen consumption by stimulating glucose trans-
porter type 4 (GLUT 4) translocation and expression in isolated 
mitochondria [42]. Other studies suggest that quercetin and its 
derivatives stimulate glucose uptake in muscle cells by activat-
ing AMPK. Quercetin inhibits glucokinase activity in strepto-
zotocin-induced diabetic rats and decreases hyperglycemia by 
stimulating GLUT 4, hepatic gluconeogenesis, and glycogenoly-
sis. In addition, it increases glucose uptake in the liver [43].

2) Rutin
Rutin, also known as quercetin-3-O-rutinoside, sophorin, 

and glycosylated quercetin, is found in high amounts in fruits, 
such as grapes, lemons, and buckwheat. Rutin’s ability to inhibit 
glucose absorption from the small intestine is responsible for 
its anti-diabetic properties. Rutin exerts its anti-diabetic activity 
through improved glucose uptake by tissues due to the suppres-
sion of tissue gluconeogenesis, activation of insulin production 
from beta-cells, and protection of the islets of Langerhans from 
degenerative alterations. Rutin also inhibits the production of 
reactive oxygen species, precursors of advanced glycation end 
products, sorbitol, and pro-inflammatory cytokines [44]. No-
table decreases in glycated hemoglobin (HbA1c) and fasting 
blood glucose were seen in streptozotocin (STZ)-induced rats 
after oral or intraperitoneal administration of rutin at a dose 
of 50 or 100 mg/kg. Rutin also induces significant increases in 
insulin levels and carbohydrate metabolic enzyme activity [45].

3) Kaempferol
Kaempferol, also called 3,4,5,7-tetrahydroxyflavone, is a non-

toxic flavonol which is mostly found in various medicinal herbs, 
edible fruits, and vegetables, such as onions, broccoli, tea, and 
spinach. Kaempferol is reported to have several health benefits, 

which include neuroprotective, antihypertensive, antimicrobial, 
antioxidant, anti-inflammatory, and anti-carcinogenic effects 
[46]. Many studies have been performed to evaluate the anti-
diabetic activity of Kaempferol. In one report, STZ-induced dia-
betic mice treated with Kaempferol for 12 weeks showed a sig-
nificant reduction in blood glucose levels in both the fasting and 
non-fasting groups [47]. Another study reported that in high-
fat, insulin-resistant rats, oral administration of kaempferol (50 
mg/kg) substantially reduced fasting blood glucose levels and 
improve impaired glucose tolerance and insulin sensitivity. Im-
proved pyruvate tolerance and lower hepatic glucose production 
were linked to these positive outcomes. As a result, kaempferol 
administration enhanced Akt and hexokinase activity while 
decreasing pyruvate carboxylase activity in the livers of obese 
mice. In obese mice, kaempferol also enhanced systemic insulin 
sensitivity without affecting weight gain or food intake [48]. 

4) Genistein
One of the major soy isoflavones, genistein (4’, 5, 7-trihy-

droxyisoflavone), has intrigued researchers in recent decades 
after several epidemiological studies suggested that eating a soy-
rich diet may be an important factor contributing to the lower 
incidence of breast and prostate cancer in Asian countries [49]. 
It is the most abundant isoflavone, followed by daidzein, which 
differs from genistein only by having a hydroxyl group at C5. 
Some recent evidence indicates the potential for using genistein 
as a preventative and therapeutic treatment for patients with 
diabetes. Gilbert and Liu [50] studied the anti-diabetic benefit 
of genistein on alloxan-induced Sprague-Dawley rats aged 7-8 
weeks. The rats were orally gavaged with 8, 18, or 30 mg/kg 
body weight (BW) of genistein daily for 4 weeks. The authors 
reported that a 30 mg dose of genistein was the most successful 
in mitigating alloxan’s effects, with lower fasting blood glucose, 
higher serum insulin, and increased islet mass after 4 weeks. 
Dietary genistein intake lowered hyperglycemia and improved 
glucose tolerance, blood insulin levels, and islet cell prolifera-
tion, survival, and mass in STZ-induced diabetic mice. These 
findings suggest that genistein may have a natural anti-diabetic 
moiety that works by activating the cyclic adenosine 3’, 5’-mo-
nophosphate (cAMP)/protein kinase (PKA)-dependent extra-
cellular signal-regulated kinases 1 and 2 (ERK1/2) signaling 
pathway [33].

5) Chrysin
Chrysin (5,7-dihydroxyflavone) is a flavonoid found mainly 
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in the aerial parts of Oroxylum, chamomile, and members of 
the Passiflora genus, as well as in propolis and honey. Chrysin 
possesses promising anti-diabetic, anti-inflammatory, and an-
tioxidant qualities, and its aromatase suppressive action makes 
it a popular dietary supplement for bodybuilders [51]. A recent 
study showed that chrysin exhibits anti-hyperglycemic activity 
similar to insulin, which has been linked to improved glucose 
metabolism and glucose uptake after intestinal glucose absorp-
tion. It is also reported to act on insulin sensitization caused 
by chrysin-induced peroxisome proliferator activated receptor 
(PPAR) activation and 11β-hydroxysteroid dehydrogenase type 
1 (11-HSD1) inhibition [52]. Phytosomes containing chrysin 
(100 mg/kg) improved glucose uptake in the muscle, as evi-
denced by the increased expression of hexokinase 2, GLUT 4, 
and PPAR (p = 0.05) [53].

3. Stilbenes

Stilbenes have a 1,2-diphenylethylene nucleus and consist 
of two phenolic rings connected by a two-carbon methylene 
bridge. Stilbene production is initiated by the enzyme stilbene 
synthase, which is found in small amounts in plants [54]. Res-
veratrol (RSV) is a non-flavonoid polyphenolic compound be-
longing to the stilbenoid class. It is the most important stilbene 
due to its well-known bioactivity. It is usually found at different 

concentrations in grapes, berries, soy, and dark chocolate. RSV 
has been reported to improve the status of diabetes mellitus 
through a diverse mechanism, which includes a reduction in 
blood glucose concentration by increasing glucose uptake and 
proper utilization. It also increases insulin sensitivity and the 
restoration of abnormal insulin signaling pathways by silencing 
the transcription of certain genes or inactivating certain pro-
teins. High plasma glucose levels have the potential to damage 
pancreatic cells, resulting in a considerable decrease in insulin 
output. RSV has been demonstrated to stimulate an increase in 
the pancreatic cell population and insulin secretion as a strategy 
for reducing hyperglycemia. Oyenihi et al. [39] explained the 
hypoglycemic activity of RSV through various mechanisms, 
such as the activation of sirtuin 1 (SIRT1) in the muscle and the 
inhibition of protein tyrosine phosphatase (PTP) 1B expression 
in the liver.

4. Lignans

Lignans are a type of secondary metabolite formed when two 
or more phenylpropanoid units are oxidatively dimerized. They 
have a wide structural variety despite their similar biosynthetic 
molecules. This class of phytochemicals has also been shown to 
have a wide range of biological functions. Various vegetables, 
fruits, legumes, whole grain cereals, and oilseeds contain dietary 

Figure 2. Anti-diabetic mechanisms of 
phenolic compounds.
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lignans. Sesame and flax seeds are the richest sources of lignans 
among edible plant components [55]. In STZ-induced diabetic 
rats, the anti-diabetic effects of lignans and polyphenols found 
in flaxseed extract were explored. Flaxseed supplementation 
resulted in positive improvements in body weight, food and wa-
ter consumption, glycosylated hemoglobin, and blood glucose 
levels in diabetic rats. Furthermore, considerably good findings 
were observed with biochemical markers, such as lower plasma 
cholesterol, LDL cholesterol, triglycerides, plasma creatinine, 
urea, and uric acid levels, highlighting the traditional use of this 
seed in medicine [56].

DISCUSSION

High levels of antioxidant compounds and a diet abundant 
in fruits and vegetables could potentially reduce the risk of 
diabetes and the associated increased risk of microvascular and 
macrovascular complications. Studies have suggested that phe-
nolic phytochemicals obtained from various sources, including 
plants, vegetables, and fruits, show potential therapeutic ben-
efits for the treatment and management of diabetes mellitus. 
Many researchers have reported that plant-derived phenolic 
phytochemicals are capable of exerting antioxidant activities 
that potentially reduce the risk of different types of diabetes and 
the associated microvascular and macrovascular complications 
[11]. The bioactive phenolic phytochemicals have the ability to 
modulate metabolic and signaling pathways at various cellular 
levels, including gene expressions, epigenetic regulation, pro-
tein expressions, and enzyme activities. Furthermore, phenolic 
acids have proven their ability to reduce glucose levels and exert 
other effective anti-diabetic activities. According to the litera-
ture, phenolics may protect against hyperglycemia-induced 
chronic illnesses by providing antioxidant protection and inhib-
iting starch digestion. Flavonoids have shown potential glucose 
lowering activities in several clinical studies [54]. Further, stil-
benes and lignans have been reported to significantly improve 
glycemic control in type 2 diabetic patients through diverse 
mechanisms. The various mechanisms of phenolic compounds 
against diabetes are summarized in Fig. 2. Well-controlled long-
term clinical studies will help to determine the efficacy, optimal 
dose, and safety of these bioactive phenolic compounds in the 
presence of other dietary components and medicines.

CONCLUSION

Phytochemicals obtained from various plant sources are 
considered proven and time-tested sources of medicine. In this 
present work, an effort has been made to summarize the role of 
polyphenolic compounds in the management of diabetes based 
on various experimental studies performed during the recent 
decade. Based on the available information, it may be con-
cluded that phenolic compounds obtained from various natural 
sources showed promising anti-diabetic activities. The plant-
derived phenolic compounds produce anti-diabetic effects 
through various mechanisms, such as AMPK pathway activa-
tion, α glucosidase/α amylase inhibition, glucose uptake and 
insulin sensitivity improvement, and PPAR activation. Further-
more, these compounds can be utilized as alternative medicines 
in the treatment and management of other associated diseases. 
However, more studies are required to confirm the potential 
benefits of these compounds in humans.
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