• Title/Summary/Keyword: phenol toxicity

Search Result 53, Processing Time 0.026 seconds

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

Fetal growth retardation induced by maternal exposure to phenol in the rat (임신 랫트의 페놀 노출에 따른 태자의 발육 지연효과)

  • Chung, Moon-koo
    • Korean Journal of Veterinary Research
    • /
    • v.34 no.3
    • /
    • pp.601-607
    • /
    • 1994
  • This study was carried out to investigate the potential of phenol to induce embryotoxicity in the Sprague-Dawley rat. Seventy mated rats were distributed among three treated troups, a vehicle control group and a negative control group. Phenol was at dose levels of 20, 60 and 180mg/kg/day adminsistered by gavage to pregnant rats three times per day from days 7 to 12 of gestation. All dams were subjected to the caesarean section on day 20 of gestation. At 120mg/kg, dams exhibited decreased locomotivity. In addition, both weight reduction and retarded ossification of fetuses were observed. There were no signs of maternal toxicity or embryotoxicity at 20 and 60mg/kg. The results show that phenol induces fetal growth retardation at maternally subtoxic dose in rats.

  • PDF

Growth Response of Avena sativa in Amino-Acids-Rich Soils Converted from Phenol-Contaminated Soils by Corynebacterium glutamicum

  • Lee, Soo-Youn;Kim, Bit-Na;Choi, Yong-Woo;Yoo, Kye-Sang;Kim, Yang-Hoon;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.541-546
    • /
    • 2012
  • The biodegradation of phenol in laboratory-contaminated soil was investigated using the Gram-positive soil bacterium Corynebacterium glutamicum. This study showed that the phenol degradation caused by C. glutamicum was greatly enhanced by the addition of 1% yeast extract. From the toxicity test using Daphnia magna, the soil did not exhibit any hazardous effects after the phenol was removed using C. glutamicum. Additionally, the treatment of the phenol-contaminated soils with C. glutamicum increased various soil amino acid compositions, such as glycine, threonine, isoleucine, alanine, valine, leucine, tyrosine, and phenylalanine. This phenomenon induced an increase in the seed germination rate and the root elongation of Avena sativa (oat). This probably reflects that increased soil amino acid composition due to C. glutamicum treatment strengthens the plant roots. Therefore, the phenol-contaminated soil was effectively converted through increased soil amino acid composition, and additionally, the phenol in the soil environment was biodegraded by C. glutamicum.

Acute and Chronic Toxicity of Phenol to Mysid, Archaeomysis kokuboi (곤쟁이, Archaeomysis kokuboi에 미치는 phenol의 급성 및 만성독성)

  • KIM Jeong-Seon;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.87-97
    • /
    • 1995
  • Acute and chronic toxicity of phenol on the mortality, long-term survival and respiration rates of the mysid, Archaeomysis kokuboi adult and juvenile were examined. This experiment was condurted by static bioassay procedure with the different salinity at $25^{\circ}C$ In lethal test, the test animals were exposed to 6 different phenol concentrations to determine $LC_{50}$ and I$LT_{50}$ (median lethal concentration and time) values. The $LC_{50}$ values with the exposure time for the mysid adult ranged from 31.31ppm to 1.49ppm phenol and for the mysid juvenile ranged from 6.90ppm to 0.26ppm in all experimental groups. Mortality was increased with the decrease of salinity, The $96hr-LC_{50}$ values at 16, 24 and $32\%o$ salinity for the mysid adult were 1.49, 2.71 and 4.53ppm phenol, white the values for the mysid juvenile were 0.26, 0.56 and 0.71ppm, respectively. The ratios of $96hr-LC_{50}$ values for the mysid adult to those for the mysid juvenile at 16, 24 and $32\%p$ salinity were 5.73, 4.84 and 6.38, respectively. The mysid juveniles were more sensitive to phenol than the mysid adults. Compared $LT_{50}$ values for the mysid adult with those for the mysid juvenile, the $LT_{50}$ values for the mysid adult ranged from 384.7 to 29.0 hours at 1.7-127ppm phenol concentrations and for the mysid juvenile ranged from 132.2 to 18.7 hours at 0.5~6.Oppm phenol concentrations. The lowest $LT_{50}$ values for the mysid adult and juvenile were showed at the combination of the highest experimental concentration of phenol and the lowest experimental salinity. The mysid juveniles showed lower $LT_{50}$ values than those of adults. The chronic effects of phenol on the mysid at the sublethal effective concentration of phenol were lower in the $32\%o$ salinitr group than 16 or $24\%o$ salinity groups. Oxygen consumption rates of the mysid adult were decreased with the increase of phenol concentration and exposure time, and decreased significantly in lower salinity at the same concentration or phenol.

  • PDF

Regulation of Phycocyanin Development by Phenolic Compounds in the Cyanobacterium Anabaena sp. PCC 7120

  • Kim, Jin-Yong;Jo, Yeara;Kim, Young-Saeng;Lee, Eun-Jin;Yoon, Ho-Sung
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.445-449
    • /
    • 2006
  • Phenolic compounds are manufacturing by-products commonly found in industrial wastewater. The toxicity of high level phenolic compounds in wastewater threatens not only the aquatic organisms, but also many components of the adjacent ecosystem. One of the major light harvesting pigments in cyanobacteria is phycocyanin which can be rapidly and specifically degraded by external stimuli such as nutritional depletion or environmental stress. We employed the cyanobacterium Anabaena sp. PCC 7120 as an indicator organism in estimating the pollution level by phenolic compounds. The phycocyanin content of the cyanobacterium decreased without significantly altering the total chlorophyll as the phenol concentration in a medium increased. We examined the phenol contamination level using the correlation of the phycocyanin content and the phenol concentration. Our results indicated that no significant pollution by phenolic compounds was found in several waterbodies in the vicinity of Daegu, South Korea.

Effect of Phase Separation on Anaerobic Degradation of Phenol (페놀의 혐기성분해에 대한 상분리의 영향)

  • Park, Ju-Seok;Shin, Hang-Sik;Bae, Byung-Uk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.1
    • /
    • pp.27-33
    • /
    • 1994
  • With the rapid industrialization, an ever-increasing quantity and kind of new organic compounds pose environmental problems due to their toxicity and physiological effect. However, research on the biodegradation of these compounds under anaerobic condition is very limited inspite of its efficiency and economical advantage. In this research, the pH effect on the ring cleavage of phenol under anaerobic condition was investigated, and the theory of phase separation was applied to the degradation of phenol for investigating the role of acidogenic bacteria. Results, obtained from biochemical methane potential(BMP) assay for 15.5 days of incubation, showed that acidic condition was more desirable for phenol degradation than alkaline condition. By both unacclimated methanogenic granular sludge and two mixed cultures, phenol was completely removed within six weeks of incubation with a gas conversion rate of over 86% of theoretical one. However, phenol was not degraded by unacclimated acidogenic culture, and thus it is considered as a syntrophic substrate. In case of phase separated biochemical methane potential(PSBMP) assay, in which acidogenic and methanogenic culture were seeded separately and consecutively, those that had been subjected to normal acidogens for 3 to 4 weeks showed higher gas production than those seeded with sterile or frozen culture.

  • PDF

Fate and Toxicity of Spilled Chemicals in Groundwater and Soil Environment III: organics (사고 누출 화학물질의 지하수 및 토양 환경 내 거동 및 환경 독성 특성 III: 유기화학물질을 중심으로)

  • Jeong, Seulki;Moon, Hee Sun;Shin, Doyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This study presents a technical perspective to the fate characteristics of phenol and m-cresol, which represent some of the most common organic chemicals found in chemical spill accidents, and likely to persist in soil and groundwater due to their highly stable physicochemical properties. Some cases of domestic and foreign chemical accidents linked to phenol and m-cresol contamination were compiled. Due to their low organic carbon-water partitioning coefficient (Koc), phenol and m-cresol tend to migrate into groundwater and remained as dissolved phase. On the other hands, phenol and m-cresol can be readily decomposed by microbes in soil and groundwater under appropriate conditions. Therefore, the fate characteristics of these chemicals are highly contingent on environmental conditions. Thus, if a great quantity of leakage is occurred by chemical accidents, the up-to-date and correct information about fate characteristics taking into account both the chemical and environmental conditions is greatly needed to minimized the potential hazards from these chemicals.

Interaction of Phenolic Compound-Specific Activator with Its Promoter using SPR-Based DNA Chip (SPR 근거 DNA 칩을 이용한 페놀 화합물 특이 CapR 조절 단백질과 촉진유전자와의 상호작용 연구)

  • 박선미;박후휘;임운기;신혜자
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.99-104
    • /
    • 2003
  • Aromatic compounds are of major concern among environmental pollutants due to their toxicity and persistence. To monitor aromatic compounds in a real time with a better sensitivity, a new method of SPR (surface plasmon resonance) based on DNA chip (Biacore 3000) was developed here. It is thought that CapR regulatory protein as a complex with phenol, could bind to their corresponding promoter, Po. Biotinylated DNA oligomers for the promoter was synthesized by PCR and coupled onto streptoavidin-linked CM5-chip. CapR regulatory proteins were purified after cloning their genes in pET21a (+) vector and expressing proteins. The interaction was assessed by the system where the regulatory proteins flowed with or without phenol through the cells of DNA chip. CapR regulatory protein even in the presence of phenol had no response to its promoter, Po, suggesting that other factor(s) might be required for the activation of Po promoter. The present work reveals a promising possibility of the SPR-based DNA chip in monitoring specific environmental pollutants in a real time.

A Whole Cell Bioluminescent Biosensor for the Detection of Membrane-Damaging Toxicity

  • Park, Sue-Hyung;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.59-62
    • /
    • 1999
  • The recombinant bacteria strain DPD2540, containing a fabA::luxCDABE fusion, was used to detect the toxicity of various chemicals in this study. Membrane damaging agents such as phenol, ethanol, and cerulenin induced a rapid bioluminescent response from this strain. Other toxic agents, such as DNA-damaging or oxidative-damaging chemicals, showed a delayed bioluminescent response in which the maximum peak appeared over 150 min after induction. This strain was also tested for measurement of toxicity in field samples such as wastewater and river water effluents.

  • PDF

Multi-Channel Two-Stage 시스템을 이용한 수질 독성 모니터링의 지표 확립 및 모사

  • Kim, Byeong-Chan;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.715-718
    • /
    • 2000
  • The character of a recombinant bioluminescent bacteria's light emission enables us to monitor toxicity in water, soil and air. In this study, various bioluminescent responses to water samples containing toxic chemicals, such as phenol and mitomycin C, were obtained and analysed through the use of a multi-channel two-stage minibioreactor system. The bioluminescent pattern from each channel can be used as a standard for identifying the degree of toxicity in field samples. When various concentrations of toxic chemicals were injected in a step manner, different bioluminescent patterns were obtained. Also this system showed variation in its bioluminescent pattern as the injection manner was changed, i.e. using a modified version of the bell-curve type injection. In conclusion, the toxicity was shown to be related with the bioluminescent response when using these standard bioluminescent patterns. Comparing this standard with a bioluminescent response from a field sample, we can estimate the degree of which the sample is toxic.

  • PDF