• 제목/요약/키워드: phenol compounds

검색결과 513건 처리시간 0.025초

모형 슬러리 돈사 활용한 분뇨의 저장기간별 악취물질 농도 조사 (The Effect of Storage Period of Piggery Slurry on Odorous Compound Concentration from Manure at the Pilot Scale)

  • 이강훈;조성백;박규현;양승학;이준엽;오상집;김인호;최동윤;유용희;황옥화
    • 한국축산시설환경학회지
    • /
    • 제18권sup호
    • /
    • pp.29-34
    • /
    • 2012
  • 본 연구는 돈사 슬러리 피트와 유사한 형태의 모형의 아크릴 반응조에서 분뇨를 6주간 배양하면서 2주 간격으로 악취물질의 농도를 측정하기 위해 수행되었다. 1. 분뇨를 6주간 저장하는 동안 2주 간격으로 단쇄지방산의 농도를 측정하였을 때 시간이 경과함에 따라 뚜렷하게 감소하였으며(p<0.05), 이성체지방산의 농도는 저장 4주 이후 크게 감소되었다(p<0.05). 2. 분뇨 저장기간별 페놀류 농도는 0, 2, 4, 6주에 각각 68.27, 47.69, 26.08, 8.84 ppm으로 시간 경과와 함께 크게 감소되었다(p<0.05). 3. 그러나 분뇨를 6주간 저장하는 동안 인돌류 농도는 저장 4주부터 증가되었다(p<0.05).

산소-플라즈마 방전을 이용한 수중의 페놀 제거 (Phenol Removal Using Oxygen-Plasma Discharge in the Water)

  • 박영식
    • 한국환경과학회지
    • /
    • 제22권7호
    • /
    • pp.915-923
    • /
    • 2013
  • Decomposition of non-biodegradable contaminants such as phenol contained in water was investigated using a dielectric barrier discharge (DBD) plasma reactor in the aqueous solutions with continuous oxygen bubbling. Effects of various parameters on the removal of phenol in aqueous solution with high-voltage streamer discharge plasma are studied. In order to choose plasma gas, gas of three types (argon, air, oxygen) were investigated. After the selection of gas, effects of 1st voltage (80 ~ 220 V), oxygen flow rate (2 ~ 7 L/min), pH (3 ~ 11), and initial phenol concentration (12.5 ~ 100.0 mg/L) on phenol degradation and change of $UV_{254}$ absorbance were investigated. Absorbance of $UV_{254}$ can be used as an indirect indicator of phenol degradation and the generation and disappearance of the non-biodegradable organic compounds. Removal of phenol and COD were found to follow pseudo first-order kinetics. The removal rate constants for phenol and COD of phenol were $5.204{\times}10^{-1}min^{-1}$ and $3.26{\times}10^{-2}min^{-1}$, respectively.

참깨박에 함유된 Phytate와 Phenol 화합물의 제거가 단백질의 기능성에 미치는 영향 (Effect of Reduction of Phytate and Phenol Compound on the Functional Properties of Sesame Protein Concetrate)

  • 김진;박정룡
    • 동아시아식생활학회지
    • /
    • 제3권2호
    • /
    • pp.129-137
    • /
    • 1993
  • This study was attempted to determine the effect of reduction of phytate and phenol compound on the functional properties of sesame protein concentrate. The concentrates were prepared by using dist-water, HCI and butanol. The content of phytate and phenol compound in defatted sesame meal were 4.55% and 3.42% respectively. Considerable amount of phytate was reduced by using HCI, and butanol was effective in removing phenol compounds, Higher bulk density and fat absorption were found in sesame protein concentrate prepared by butanol but higher water absorption was found in the concentrate prepared by dist-water. Also, emulsifying and foaming properties were improved by butanol treatment.

  • PDF

Differential Modification of Sperm Parameters by Various Volatile Organic Compounds

  • Choi, Dal-Woong;Sohn, Jong-Ryeul;Moon, Kyung-Whan;Byeon, Sang-Hoon;Yoo, Dong-Chul;Kim, Hi-Chol;Kim, Young-Whan
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.319-322
    • /
    • 2005
  • Porous building materials are not only sources of indoor air pollutants such as volatile organic compounds (VOCs) but they are also strong sinks of these pollutants. Volatile organic compounds have been implicated in impaired spermatogenesis, increase in the incidence of malformed sperm and decrease in the percentage of moving sperm. The aim of this study was to determine and compare the direct effects of various volatile organic compounds (phenol, formaldehyde; HCHO, ethanol, toluene, styrene) on motility and survival rate of human sperm in vitro. Semen samples from 3 health subjects were prepared using swim-up method and 1-10mM volatile organic compounds were added to the test medium. HCHO and phenol produced significant decreases in the motility and survival rate with a different potency. The most potent inhibition of motility and survival rate was observed after exposure to HCHO. Less than 1mM HCHO significantly inhibited sperm motility. When ethanol is added directly to sperm, at concentrations equivalent to that in serum after heavy drinking, these damaging effects were lowest compared with other volatile organic compounds. Present study shows that each compound has differential toxic potency to human sperm and we need special caution for the use of HCHO and phenol.

  • PDF

Antioxidant Activities and Phenolic Compounds Composition of Extracts from Mulberry (Morus alba L.) Fruit

  • Bang, In-Soo;Park, Hee-Yong;Yuh, Chung-Suk;Kim, Ae-Jung;Yu, Chang-Yeon;Ghimire, Bimal;Lee, Han-Shin;Park, Jae-Gun;Choung, Myoung-Gun;Lim, Jung-Dae
    • 한국약용작물학회지
    • /
    • 제15권2호
    • /
    • pp.120-127
    • /
    • 2007
  • The objective of this research was to evaluate the ability of water and ethanol extracts from mulberry fruit (Morus alba L.) to influence the inhibitory activity of angiotensin converting enzyme (ACE) and xanthine oxidase(XOase). The total phenol contents and sixteen phenolic compounds were investigated in water and ethanol extracts. In order to understand the factors responsible for the potent antioxidant and antihypertensive ability of mulberry, it has been evaluated for anti-oxidative activity using Fenton's reagent/ethyl linoleate system and for free radical scavenging activity using the 1,1-diphenyl-2-picryl hydrazyl free radical generating system. The total phenol contents and total of phenolic compounds in ethanol extract showed higher levels than water extract in mulberry fruit six phenolic compounds (chlorogenic acid, narigin, syringic acid, quercetin, naringenin, kampferol) has a higher individual phenolic compound content in the 60% ethanol extraction than 80% ethanol extract. The inhibitory activity on angiotensin converting enzyme (ACE) were highest in 80% ethanol extract (9.0%). Also, activity of xanthine oxidase(XOase) inhibition appeared highest in 80% ethanol extracts and correlated well with the total phenolic content, which was modulated by the concentration of individual phenolic compounds. This result revealed, that strong biological activity was caused by specific phenol compound contents. Utilization of water and ethanol extracts from mulberry fruit are expected to be good candidate for development into source of free radical scavengers and anti-hypertentive activity

Comparison of Pyrolytic Components in lamina and Midrib of Flue-Cured Tobacco Leaves

  • Lee, Jae-Gon;Jang, Hee-Jin;Kwag, Jae-Jin;Lee, Dong-Wook
    • 한국연초학회지
    • /
    • 제22권2호
    • /
    • pp.176-183
    • /
    • 2000
  • This study was conducted to compare the volatile components of lamina(cutter group) and midrib of flue-cured tobacco leaves by two analytical methods, Curie-Point pyrolysis and Purge & Trap headspace technique. The pyrolysis of lamina and midrib part of tobacco leaves was performed at the temperature of $330^{\circ}C$, $650^{\circ}C$, and $920^{\circ}C$ by Curie-Point Pyrolyzer, and 33 compounds were identified in the pyrolyzates by GC/MSD. The composition of the components identified showed a quite difference between lamina and midrib. However, the amount of the pyrolyzed products from the both of lamina and midrib was increased with temperature increase except that of acetic acid, furfural, and nicotine. The content of phenolic compounds including phenol, 4-methyl phenol, and 3-methyl phenol was higher in midrib than in lamina, while that of furan compounds such as 2,3-dihydrobenzofuran, 5-hydroxymethyl furfural, was high in lamina. Interestingly, acetamide, 2-propenamide and 3-acetoxy pyridine were not defected in the pyrolyzates of lamina. By Purge & Trap headspace technique, 28 volatile components were identified in both lamina and midrib. The composition of the identified compounds and their chromatograpic patterns also showed the complete difference between the two. The content of solanone, $\beta$-damascone, $\beta$-damascenone, and megastigmatrienones, key components of tobacco aroma, was much higher in lamina than in midrib. The results indicate that lamina contains much more carbonyl compounds known to enhance the smoke taste of cigarette, whereas midrib takes nitrogenous and phenolic compounds, which are known to cause a deteriorate effect of smoke such as irritation.

  • PDF

Evaluation of Antioxidant Activities and Active Compounds Separated from Water Soluble Extracts of Korean Black Pine Barks

  • Shen, Chang-Zhe;Jun, Hong-Young;Choi, Sung-Ho;Kim, Young-Man;Jung, Eun-Joo;Oh, Gi-Su;Joo, Sung-Jin;Kim, Sung-Hyun;Kim, Il-Kwang
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3567-3572
    • /
    • 2010
  • Black pine barks from the southern region of Korea were extracted using pressurized hot water and the water soluble extracts were then separated in a stepwise fashion using a variety of solvents, column chromatography (CC), thin layer chromatography (TLC), and high pressure liquid chromatography (HPLC). The antioxidant activities of each fraction and the active compounds were determined based on the radical scavenging activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH), reductive potential of ferric ion, and total phenol contents. A DPPH test showed that the half maximal effective concentration ($EC_{50}$ value : $6.59{\pm}0.31\;{\mu}g/mL$) of the ethyl acetate fraction (ca. 0.67%) was almost the same as that of the control compounds and inversely proportional to the value of the total phenol contents. The cell viability of the water extracts was confirmed by methyl thiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT) with enzyme linked immune sorbent assay (ELISA). Catechin, epicatechin, quercetin and ferulic acid were isolated from the ethyl acetate fraction as active compounds and identified by nuclear magnetic resonance. The antioxidant activity as value of DPPH of each of the separated compounds was lower than the ethyl acetate fraction, and ferulic acid was the lowest among these compounds.

냉장저장 중 사과슬라이스의 개별페놀성분함량과 제변화 (Changes in the Content of Individual Phenolic Compounds in Apple Slices during Cold Storage)

  • 안선정
    • 한국식생활문화학회지
    • /
    • 제23권4호
    • /
    • pp.489-498
    • /
    • 2008
  • The objectives of this study were to provide fundamental information on how individual phenolic compounds form on the inside of apple slices during cold storage, the changes in the content of four types of phenols, ingredient variation of individual phenolic compounds and the influence of phenolic compounds on enzymatic browning. This study measured the changes in the content of soluble solids, pH and vitamin C in order to investigate the correlations between these variables. HD and FA were the main phenolic compounds found in the apple slices, and HD was the most prevalent phenol. Furthermore, comparison of the CG and EP content revealed that there were more CGs than EPs. The phenol content tended to decrease considerably in the fresh apple slices and water-dipped apple slices but only slightly in the CP from sucrose-dipped apple slices and 0.5% ascorbic acid solution-dipped apple slices. The degree of browning increased in the following order: fresh apple slices, water-dipped apple slices, 0.5% ascorbic acid solution-dipped apple slices and CP from sucrose-dipped apple slices. The vitamin C content tended to decrease in the fresh apple slices, water-dipped apple slices, 0.5% ascorbic acid solution-dipped apple slices and CP from sucrose-dipped apple slices. The pH tended to increase in all sample groups, but the pH of the water-dipped apple slices was lower than that of the comparison group. The CP from sucrose-dipped apple slices had the lowest value of pH. The change in soluble solids tended to increase in all treatment groups, but this increase was less in the CP from sucrose-dipped apple slice. Correlation analysis revealed a high degree of correlation between browning and chlorogenic acid content. The results of the present study show that, when stored in the fridge, the change in phenol ingredient content in apple slices influences the browning of the slices. The results also showed that HD and FA were the main phenolic compounds, while CG was shown to have the greatest influence on browning.

Alpine Microorganisms: Useful Tools for Low-Temperature Bioremediation

  • Margesin, Rosa
    • Journal of Microbiology
    • /
    • 제45권4호
    • /
    • pp.281-285
    • /
    • 2007
  • Cold environments, including polar and alpine regions, are colonized by a wide diversity of micro-organisms able to thrive at low temperatures. There is evidence of a wide range of metabolic activities in alpine cold ecosystems. Like polar microorganisms, alpine microorganisms playa key ecological role in their natural habitats for nutrient cycling, litter degradation, and many other processes. A number of studies have demonstrated the capacity of alpine microorganisms to degrade efficiently a wide range of hydrocarbons, including phenol, phenol-related compounds and petroleum hydrocarbons, and the feasibility of low-temperature bioremediation of European alpine soils by stimulating the degradation capacity of indigenous microorganisms has also been shown.

Development of Near-Critical Water Reaction System for Utilization of Lignin as Chemical Resources

  • 엄희준;홍윤기;박영무;정상호;이관영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.251.2-251.2
    • /
    • 2010
  • Plant biomass has been proposed to be an alternative source for petroleum-based chemical compounds. Especially, phenolic chemical compounds can be obtained from lignin by chemical depolymerization processes because lignin consists of complex aromatic polymer such as trans-p-coumaryl, coniferyl and sinapyl alcohols, etc. Phenolic chemical compounds from lignin were usually produced in super critical water. However, we applied Near-critical water (NCW) system because NCW is known as a good solvent for lignin depolymerization. Organic matter like lignin can be solved in NCW system and the system has a unique acid-base property without conventional non-eco-friendly chemicals such as sulfuric acid and sodium hydroxide. In this work, we tried to optimize the NCW depolymerization system by adjusting the processing variables such as reaction time, temperature and pressure. Moreover, the amount of additional phenol was optimized by changing the molar ratio between water and phenol. Phenol was used as capping agent to prevent re-polymerization of active fragment such as formaldehyde. Alkali-lignin was used as a starting material and characterized by a Solid State 13C-NMR, FT-IR and EA (Elemental Analysis). GC-MS analysis confirmed that o-cresol, p-cresol, anisole and 4-hydroxyphathalic acid were the main product and they were quantitatively analyzed by HPLC.

  • PDF