• Title/Summary/Keyword: phenazine-1-carboxylic acid (PCA)

Search Result 7, Processing Time 0.018 seconds

Phenazine 1-carboxylic acid resistance in phenazine 1-carboxylic acid producing Bacillus sp. B-6

  • Kim, Kyoung-Ja
    • BMB Reports
    • /
    • v.33 no.4
    • /
    • pp.332-336
    • /
    • 2000
  • Phenazine 1-carboxylic acid (PCA) is an antifungal antibiotic isolated from a culture filtrate of Bacillus sp. B-6 producing an acyl CoA synthetase inhibitor. This antibiotic is reported as an inhibitor of an acyl CoA synthetase from Pseudomonas sp.. Bacillus sp. B-6 was resistant to PCA up to 350 ${\mu}g/ml$. We investigated the mechanism of the resistance of Bacillus sp. B-6 to PCA. The rate of growth in a medium containing up to 100 ${\mu}g/ml$ was as rapid as the PCA-free medium. At a PCA concentration of 300 ${\mu}g/ml$, the growth rate was more than half that of the control. In this work, we purified acyl CoA synthetase from Bacillus sp. B-6 and found that this acyl CoA synthetase was much less sensitive to PCA than the acyl CoA synthetase from other source. These findings suggested that the insensitivity of Bacillus sp. B-6 acyl CoA synthetase plays an important role in the PCA resistance of this bacterium.

  • PDF

Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84

  • Yu, Jun Myoung;Wang, Dongping;Pierson, Leland S. III;Pierson, Elizabeth A.
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.44-58
    • /
    • 2018
  • Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.

Elucidation of Antifungal Metabolites Produced by Pseudomonas aurantiaca IB5-10 with Broad-Spectrum Antifungal Activity

  • Park, Gwee-Kyo;Lim, Jong-Hui;Kim, Sang-Dal;Shim, Sang-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.326-330
    • /
    • 2012
  • Antifungal metabolites were isolated from a culture of Pseudomonas aurantiaca IB5-10. Chemical structures of the metabolites were elucidated as phenazine-1-carboxylic acid (PCA; 1), 2-hydroxyphenazine (2-OH-PHZ; 2), and cyclo-(L-Pro-L-Val; 3), respectively, based on spectroscopic methods. Among them, 3 was isolated for the first time from this strain. The antifungal activities of 1-3 were evaluated against a variety of plant pathogens. To the best of our knowledge, the antifungal activities of 3 against plant fungal pathogens have been evaluated for the first time in this work. PCA (1) showed the most potent antifungal activities against Phytophthora capsici, Rhizoctonia solani AG-1(IA), and Pythium ultimum with MICs (${\mu}g/ml$) of less than 1.0, 1.3, and 2.0, respectively. On the other hand, 2-OH-PHZ (2) showed potent antifungal activity against R. solani AG-1(IA) with the MIC (${\mu}g/ml$) of 2.0, whereas it showed moderate antifungal activity against P. ultimum with the MIC (${\mu}g/ml$) of 50.0. In addition, 3 showed antifungal activity against only R. solani AG-1(IA).

Characterization of a Phenazine and Hexanoyl Homoserine Lactone Producing Pseudomonas aurantiaca Strain PB-St2, Isolated from Sugarcane Stem

  • Mehnaz, Samina;Baig, Deeba Noreen;Jamil, Farrukh;Weselowski, Brian;Lazarovits, George
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1688-1694
    • /
    • 2009
  • A novel strain of fluorescent pseudomonad (PB-St2) was isolated from surface-sterilized stems of sugarcane grown in Pakistan. The bacterium was identified as Pseudomonas aurantiaca on the basis of 16S rRNA gene sequence analysis and results from physiological and biochemical characteristics carried out with API50 CH and QTS 24 bacterial identification kits. Assays using substrate-specific media for enzymes revealed lipase and protease activities but cellulase, chitinase, or pectinase were not detected. The bacterium was unable to solubilize phosphate or produce indole acetic acid. However, it did produce HCN, siderophores, and homoserine lactones. In dual culture assays on agar, the bacterium showed antifungal activity against an important pathogen of sugarcane in Pakistan, namely Colletotrichum falcatum, as well as for pathogenic isolates of Fusarium oxysporium and F. lateritium but not against F. solani. The antifungal metabolites were identified using thin-layer chromatography, UV spectra, and MALDI-TOFF spectra and shown to be phenazine-1-carboxylic acid (PCA), 2-hydroxyphenazine (2-OH-PHZ), and N-hexanoyl homoserine lactone (HHL) (assessed using only TLC data). The capacity of this bacterium to produce HCN and 2-OH-PHZ, as well as to inhibit the growth of C. falcatum, has not been previously reported.

Positive Regulation of Pyoluteorin Biosynthesis in Pseudomonas sp. M18 by Quorum-Sensing Regulator VqsR

  • Huang, Xianqing;Zhang, Xuehong;Xu, Yuquan
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.828-836
    • /
    • 2008
  • The biocontrol rhizobacterium Pseudomonas sp. M18 can produce two kinds of antibiotics, namely pyoluteorin (Plt) and phenazine-1-carboxylic acid (PCA), and is antagonistic against a number of soilborne phytopathogens. In this study, a luxR-type quorum-sensing regulatory gene, vqsR, was identified and characterized immediately downstream of the Plt gene cluster in strain MI8. A vqsR-inactivated mutant led to a significant decrease in the production of Plt and its biosynthetic gene expression. However, this was restored when introducing the vqsR gene by cloning into the plasmid pME6032 in trans. The vqsR mutation did not exert any obvious influence on the production of PCA and its biosynthetic gene expression and the production of N-acylhomoserine lactones (C4 and C8-HSLs) and their biosynthetic gene rhlI expression. Accordingly, these results introduce VqsR as a regulator of Plt production in Pseudomonas spp., and suggest that the regulatory mechanism of vqsR in strain M18 is distinct from that in P. aeruginosa. In addition, it was demonstrated that vqsR mutation did not have any obvious impact on the expression of Plt-specific ABC transporters and other secondary metabolic global regulators, including GacA, RpoS, and RsmA.

Metabolic Profiling and Biological Activities of Bioactive Compounds Produced by Pseudomonas sp. Strain ICTB-745 Isolated from Ladakh, India

  • Kama, Ahmed;Shaik, Anver Basha;Kumar, C. Ganesh;Mongolla, Poornima;Rani, P. Usha;Krishna, K.V.S. Rama;Mamidyala, Suman Kumar;Joseph, Joveeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In an ongoing survey of the bioactive potential of microorganisms from Ladakh, India, the culture medium of a bacterial strain of a new Pseudomonas sp., strain ICTB-745, isolated from an alkaline soil sample collected from Leh, Ladakh, India, was found to contain metabolites that exhibited broad-spectrum antimicrobial and biosurfactant activities. Bioactivity-guided purification resulted in the isolation of four bioactive compounds. Their chemical structures were elucidated by $^1H$ and $^{13}C$ NMR, 2D-NMR (HMBC, HSQC, $^1H$,$^1H$-COSY, and DEPT-135), FT-IR, and mass spectroscopic methods, and were identified as 1-hydroxyphenazine, phenazine-1-carboxylic acid (PCA), rhamnolipid-1 (RL-1), and rhamnolipid-2 (RL-2). These metabolites exhibited various biological activities like antimicrobial and efficient cytotoxic potencies against different human tumor cell lines such as HeLa, HepG2, A549, and MDA MB 231. RL-1 and RL-2 exhibited a dose-dependent antifeedant activity against Spodoptera litura, producing about 82.06% and 73.66% antifeedant activity, whereas PCA showed a moderate antifeedant activity (63.67%) at 60 ${\mu}g/cm^2$ area of castor leaf. Furthermore, PCA, RL-1, and RL-2 exhibited about 65%, 52%, and 47% mortality, respectively, against Rhyzopertha dominica at 20 ${\mu}g/ml$. This is the first report of rhamnolipids as antifeedant metabolites against Spodoptera litura and as insecticidal metabolites against Rhyzopertha dominica. The metabolites from Pseudomonas sp. strain ICTB-745 have interesting potential for use as a biopesticide in pest control programs.

Secondary Metabolites Production and Plant Growth Promotion by Pseudomonas chlororaphis and P. aurantiaca Strains Isolated from Cactus, Cotton, and Para Grass

  • Shahid, Izzah;Rizwan, Muhammad;Baig, Deeba Noreen;Saleem, Rahman Shahzaib;Malik, Kauser A.;Mehnaz, Samina
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.480-491
    • /
    • 2017
  • Fluorescent pseudomonads have been isolated from halophytes, mesophytes, and xerophytes of Pakistan. Among these, eight isolates, GS-1, GS-3, GS-4, GS-6, GS-7, FS-2 (cactus), ARS-38 (cotton), and RP-4 (para grass), showed antifungal activity and were selected for detailed study. Based on biochemical tests and 16S rRNA gene sequences, these were identified as strains of P. chlororaphis subsp. chlororaphis and aurantiaca. Secondary metabolites of these strains were analyzed by LC-MS. Phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine, Cyclic Lipopeptide (white line-inducing principle (WLIP)), and lahorenoic acid A were detected in variable amounts in these strains. P. aurantiaca PB-St2 was used as a reference as it is known for the production of these compounds. The phzO and PCA genes were amplified to assure that production of these compounds is not an artifact. Indole acetic acid production was confirmed and quantified by HPLC. HCN and siderophore production by all strains was observed by plate assays. These strains did not solubilize phosphate, but five strains were positive for zinc solubilization. Wheat seedlings were inoculated with these strains to observe their effect on plant growth. P. aurantiaca strains PB-St2 and GS-6 and P. chlororaphis RP-4 significantly increased both root and shoot dry weights, as compared with uninoculated plants. However, P. aurantiaca strains FS-2 and ARS-38 significantly increased root and shoot dry weights, respectively. All strains except PB-St2 and ARS-38 significantly increased the root length. This is the first report of the isolation of P. aurantiaca from cotton and cactus, P. chlororaphis from para grass, WLIP and lahorenoic acid A production by P. chlororaphis, and zinc solubilization by P. chlororaphis and P. aurantiaca.