Browse > Article
http://dx.doi.org/10.5423/PPJ.FT.12.2017.0277

Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in Pseudomonas chlororaphis 30-84  

Yu, Jun Myoung (Department of Horticultural Sciences, Texas A&M University)
Wang, Dongping (Department of Plant Pathology and Microbiology, Texas A&M University)
Pierson, Leland S. III (Department of Plant Pathology and Microbiology, Texas A&M University)
Pierson, Elizabeth A. (Department of Horticultural Sciences, Texas A&M University)
Publication Information
The Plant Pathology Journal / v.34, no.1, 2018 , pp. 44-58 More about this Journal
Abstract
Pseudomonas chlororaphis 30-84 is a biological control agent selected for its ability to suppress diseases caused by fungal pathogens. P. chlororaphis 30-84 produces three phenazines: phenazine-1-carboxylic acid (PCA), 2-hydroxy-phenazine-1-carboxylic acid (2OHPCA) and a small amount of 2-hydroxy-phenazine (2OHPHZ), and these are required for fungal pathogen inhibition and wheat rhizosphere competence. The two, 2-hydroxy derivatives are produced from PCA via the activity of a phenazine-modifying enzyme encoded by phzO. In addition to the seven biosynthetic genes responsible for the production of PCA, many other Pseudomonas strains possess one or more modifying genes, which encode enzymes that act independently or together to convert PCA into other phenazine derivatives. In order to understand the fitness effects of producing different phenazines, we constructed isogenic derivatives of P. chlororaphis 30-84 that differed only in the type of phenazines produced. Altering the type of phenazines produced by P. chlororaphis 30-84 enhanced the spectrum of fungal pathogens inhibited and altered the degree of take-all disease suppression. These strains also differed in their ability to promote extracellular DNA release, which may contribute to the observed differences in the amount of biofilm produced. All derivatives were equally important for survival over repeated plant/harvest cycles, indicating that the type of phenazines produced is less important for persistence in the wheat rhizosphere than whether or not cells produce phenazines. These findings provide a better understanding of the effects of different phenazines on functions important for biological control activity with implications for applications that rely on introduced or native phenazine producing populations.
Keywords
biological control; eDNA; phenazine; Pseudomonas chlororaphis 30-84; biofilm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Weller, D. 1983. Colonization of wheat roots by a fluorescent pseudomonad suppressive to take-all. Phytopathology 73:1548-1553.   DOI
2 Whitchurch, C. B., Tolker-Nielsen, T., Ragas, P. C. and Mattick, J. S. 2002. Extracellular DNA required for bacterial biofilm formation. Science 295:1487-1487.   DOI
3 Wilkinson, H., Cook, R. and Alldredge, J. 1985. Relation of inoculum size and concentration to infection of wheat roots by Gaeumannomyces graminis var. tritici. Phytopathology 75: 98-103.   DOI
4 Wood, D. W., Gong, F., Daykin, M. M., Williams, P. and Pierson, L. S., III. 1997. N-acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179:7663-7670.   DOI
5 Yu, J. M. 2016. Regulation and ecological roles of phenazine biosynthesis in the biological control strain Pseudomonas chlororaphis 30-84. Ph.D. thesis. Texas A&M University, College Station, TX, USA.
6 Yu, J. M., Wang, D., Pierson, L. S., III and Pierson, E. A. 2017. Disruption of MiaA provides insights into the regulation of phenazine biosynthesis under suboptimal growth conditions in Pseudomonas chlororaphis 30-84. Microbiology 163:94-108.   DOI
7 Mavrodi, D. V., Mavrodi, O. V., Parejko, J. A., Bonsall, R. F., Kwak, Y.-S., Paulitz, T. C., Thomashow, L. S. and Weller, D. M. 2012a. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl. Environ. Microbiol. 78:804-812.   DOI
8 Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., Mazurier, S., Heide, L., Blankenfeldt, W. and Weller, D. M. 2010. Diversity and evolution of the phenazine biosynthesis pathway. Appl. Environ. Microbiol. 76:866-879.   DOI
9 Mavrodi, O. V., Mavrodi, D. V., Parejko, J. A., Thomashow, L. S. and Weller, D. M. 2012b. Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas spp. in the rhizosphere of wheat. Appl. Environ. Microbiol. 78:3214-3220.   DOI
10 Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M. and Pierson, L. S., III. 1992. Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl. Environ. Microbiol. 58:2616-2624.
11 Miller, W. G., Leveau, J. H. and Lindow, S. E. 2000. Improved gfp and inaz broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact. 13:1243-1250.   DOI
12 Morales, D. K., Jacobs, N. J., Rajamani, S., Krishnamurthy, M., Cubillos-Ruiz, J. R. and Hogan, D. A. 2010. Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills candida albicans in biofilms. Mol. Microbiol. 78:1379-1392.   DOI
13 Mulcahy, H., Charron-Mazenod, L. and Lewenza, S. 2008. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog. 4:e1000213.   DOI
14 O'Toole, G. A. and Kolter, R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens wcs365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28:449-461.   DOI
15 Pierson, E. A., Wood, D. W., Cannon, J. A., Blachere, F. M. and Pierson, L. S., III. 1998. Interpopulation signaling via n-acylhomoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact. 11:1078-1084.   DOI
16 Zhou, L., Jiang, H.-X., Sun, S., Yang, D.-D., Jin, K.-M., Zhang, W. and He, Y.-W. 2016. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. World J. Micriobiol. Biotech. 32:50.   DOI
17 Wei, Q. and Ma, L. Z. 2013. Biofilm matrix and its regulation in Pseudomonas aeruginosa. Int. J. Mol. Sci. 14:20983-21005.   DOI
18 Okshevsky, M. and Meyer, R. L. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 41:341-352.   DOI
19 Ownley, B. H., Weller, D. and Thomashow, L. S. 1992. Influence of in situ and in vitro ph on suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79. Phytopathology 82:178-184.   DOI
20 Parejko, J. A., Mavrodi, D. V., Mavrodi, O. V., Weller, D. M. and Thomashow, L. S. 2012. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central washington state (USA). Microb. Ecol. 64:226-241.   DOI
21 Pierson, L. S., III, Gaffney, T., Lam, S. and Gong, F. 1995. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium pseudomonas aureofaciens 30-84. FEMS Microbiol. Lett. 134:299-307.
22 Pierson, L. S., III and Pierson, E. A. 2010. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl. Microbiol. Biotechnol. 86:1659-1670.   DOI
23 Pierson, L. S., III and Thomashow, L. S. 1992. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30-84. Mol. Plant-Microbe Interact. 5:330-339.   DOI
24 Chin-A-Woeng, T. F., Bloemberg, G. V. and Lugtenberg, B. J. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157:503-523.   DOI
25 Price-Whelan, A., Dietrich, L. E. and Newman, D. K. 2006. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2:71-78.   DOI
26 Alhede, M., Kragh, K. N., Qvortrup, K., Allesen-Holm, M., van Gennip, M., Christensen, L. D., Jensen, P. O., Nielsen, A. K., Parsek, M. and Wozniak, D. 2011. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One 6:e27943.   DOI
27 Baron, S. S., Terranova, G. and Rowe, J. J. 1989. Molecular mechanism of the antimicrobial action of pyocyanin. Curr. Microbiol. 18:223-230.   DOI
28 Bellin, D. L., Sakhtah, H., Rosenstein, J. K., Levine, P. M., Thimot, J., Emmett, K., Dietrich, L. E. and Shepard, K. L. 2014. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms. Nat. Commun. 5:3256.
29 Berg, G., Fritze, A., Roskot, N. and Smalla, K. 2001. Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillium dahliae kleb. J. Appl. Microbiol. 91:963-971.   DOI
30 Cezairliyan, B., Vinayavekhin, N., Grenfell-Lee, D., Yuen, G. J., Saghatelian, A. and Ausubel, F. M. 2013. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 9:e1003101.   DOI
31 Chin-A-Woeng, T. F., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. and Tichy, H.-V. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis pcl1391 of tomato root rot caused by Fusarium oxysporum f. Sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 11:1069-1077.   DOI
32 Steinberg, N. and Kolodkin-Gal, I. 2015. The matrix reloaded: How sensing the extracellular matrix synchronizes bacterial communities. J. Bacteriol. 197:2092-2103.   DOI
33 Ramos, I., Dietrich, L. E., Price-Whelan, A. and Newman, D. K. 2010. Phenazines affect biofilm formation by Pseudomonas aeruginosa in similar ways at various scales. Res. Microbiol. 161:187-191.   DOI
34 Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
35 Selin, C., Habibian, R., Poritsanos, N., Athukorala, S. N., Fernando, D. and De Kievit, T. R. 2009. Phenazines are not essential for Pseudomonas chlororaphis pa23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation. FEMS Microbiol. Ecol. 71:73-83.
36 Thomashow, L. S. and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499-3508.   DOI
37 Turner, J. M. and Messenger, A. J. 1986. Occurrence, biochemistry and physiology of phenazine pigment production. Adv. Microb. Physiol. 27:211-275.
38 Wang, D., Yu, J. M., Dorosky, R. J., Pierson, L. S., III and Pierson, E. A. 2016. The phenazine 2-hydroxy-phenazine-1-carboxylic acid promotes extracellular DNA release and has broad transcriptomic consequences in Pseudomonas chlororaphis 30-84. PLoS One 11:e0148003.   DOI
39 Wang, Y., Wilks, J. C., Danhorn, T., Ramos, I., Croal, L. and Newman, D. K. 2011. Phenazine-1-carboxylic acid promotes bacterial biofilm development via ferrous iron acquisition. J. Bacteriol. 193:3606-3617.   DOI
40 Wang, Y. and Newman, D. K. 2008. Redox reactions of phenazine antibiotics with ferric (hydr) oxides and molecular oxygen. Envrion. Sci. Technol. 42:2380-2386.   DOI
41 Das, T., Sehar, S. and Manefield, M. 2013b. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ. Microbiol. Rep. 5:778-786.   DOI
42 Chin-A-Woeng, T. F., Thomas-Oates, J. E., Lugtenberg, B. J. and Bloemberg, G. V. 2001a. Introduction of the phzh gene of Pseudomonas chlororaphis pcl1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol. Plant-Microbe Interact. 14:1006-1015.   DOI
43 Chin-A-Woeng, T. F., van den Broek, D., de Voer, G., van der Drift, K. M., Tuinman, S., Thomas-Oates, J. E., Lugtenberg, B. J. and Bloemberg, G. V. 2001b. Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis pcl1391 is regulated by multiple factors secreted into the growth medium. Mol. Plant-Microbe Interact. 14:969-979.   DOI
44 Das, T., Kutty, S. K., Kumar, N. and Manefield, M. 2013a. Pyocyanin facilitates extracellular DNA binding to Pseudomonas aeruginosa influencing cell surface properties and aggregation. PLoS One 8:e58299.   DOI
45 Das, T., Kutty, S. K., Tavallaie, R., Ibugo, A. I., Panchompoo, J., Sehar, S., Aldous, L., Yeung, A. W., Thomas, S. R. and Kumar, N. 2015. Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci. Rep. 5:8398.   DOI
46 Das, T. and Manefield, M. 2012. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One 7:e46718.   DOI
47 Das, T., Sharma, P. K., Busscher, H. J., van der Mei, H. C. and Krom, B. P. 2010. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl. Environ. Microbiol. 76:3405-3408.   DOI
48 Delaney, S. M., Mavrodi, D. V., Bonsall, R. F. and Thomashow, L. S. 2001. Phzo, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bacteriol. 183:318-327.   DOI
49 Ghosh, P. K. and Maiti, T. K. 2016. Structure of extracellular polysaccharides (eps) produced by rhizobia and their functions in legume-bacteria symbiosis. Achiev. Life Sci. 10:136-143.   DOI
50 Flemming, H.-C. and Wingender, J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8:623-633.   DOI
51 Gibson, J., Sood, A. and Hogan, D. A. 2009. Pseudomonas aeruginosa-candida albicans interactions: localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75:504-513.   DOI
52 Gloag, E. S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L. M., Mililli, L., Hunt, C., Lu, J. and Osvath, S. R. 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc. Natl. Acad. Sci. U.S.A. 110:11541-11546.   DOI
53 Gu, M. and Imlay, J. A. 2011. The soxrs response of Escherichia coli is directly activated by redox-cycling drugs rather than by superoxide. Mol. Microbiol. 79:1136-1150.   DOI
54 Gunn, J. S., Bakaletz, L. O. and Wozniak, D. J. 2016. What's on the outside matters: the role of the extracellular polymeric substance of gram-negative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem. 291:12538-12546.   DOI
55 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307-319.   DOI
56 Hassett, D., Charniga, L., Bean, K., Ohman, D. and Cohen, M. S. 1992. Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect. Immun. 60:328-336.
57 Flaishman, M., Eyal, Z., Voisard, C. and Haas, D. 1990. Suppression of Septoria tritici by phenazine-or siderophore-deficient mutants of Pseudomonas. Curr. Microbiol. 20:121-124.   DOI
58 Liu, G. Y. and Nizet, V. 2009. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 17:406-413.   DOI
59 Haynes, W. C., Stodola, F. H., Locke, J. M., Pridham, T. G., Conway, H. F., Sohns, V. E. and Jackson, R. W. 1956. Pseudomonas aureofaciens kluyver and phenazine ${\alpha}$-carboxylic acid, its characteristic pigment. J. Bacteriol. 72:412.
60 Jayathilake, P. G., Jana, S., Rushton, S., Swailes, D., Bridgens, B., Curtis, T. and Chen, J. 2017. Extracellular polymeric substance production and aggregated bacteria colonization influence the competition of microbes in biofilms. Front. Microbiol. 8:1865.   DOI
61 Maddula, V. S., Pierson, E. A. and Pierson, L. S., III. 2008. Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30-84: effects on biofilm formation and pathogen inhibition. J. Bacteriol. 190:2759-2766.   DOI
62 Maddula, V. S., Zhang, Z., Pierson, E. A. and Pierson, L. S., III. 2006. Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb. Ecol. 52:289-301.   DOI
63 Mann, E. E. and Wozniak, D. J. 2012. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 36:893-916.   DOI
64 Mavrodi, D. V., Blankenfeldt, W. and Thomashow, L. S. 2006. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 44:417-445.   DOI
65 Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. and Thomashow, L. S. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa pao1. J. Bacteriol. 183:6454-6465.   DOI