• Title/Summary/Keyword: phase-shift keying

Search Result 290, Processing Time 0.028 seconds

Time-Division-Multiplexing Tertiary Offset Carrier Modulation for GNSS

  • Cho, Sangjae;Kim, Taeseon;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.147-156
    • /
    • 2022
  • In this paper, we propose Time-Division-Multiplexing Tertiary Offset Carrier (TDMTOC), a novel GNSS modulation based on Tertiary Offset Carrier (TOC) modulation. The TDMTOC modulation multiplexes two three-level signals (i.e., -1, 0, and 1) while crossing over time, and is a type of TOC modulation designed specifically for signal multiplexing. The proposed modulation generates TDMTOC subcarriers of two different phases by simply combining two Binary Offset Carrier (BOC) subcarriers by addition or subtraction. TDMTOC has better correlation and spectral properties than conventional BPSK, BOC, and MBOC modulation techniques, and has good power and spectral efficiency since it can multiplex signals without power loss similar to time division multiplexing. To prove this, we introduce the multiplexing process of TDMTOC, and compare TDMTOC with Binary Phase Shift Keying (BPSK), BOC, Composite BOC (CBOC), and Time Multiplexed BOC (TMBOC) that are currently serviced in GNSS by simulations of various aspects. Through the simulation results, we prove that TDMTOC has better correlation property than modulations currently used in GNSS, less intersystem interference due to its wide spectrum property, and robustness in multipath and noise channel environments.

Low Computational FFT-based Fine Acquisition Technique for BOC Signals

  • Kim, Jeong-Hoon;Kim, Binhee;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Fast Fourier transform (FFT)-based parallel acquisition techniques with reduced computational complexity have been widely used for the acquisition of binary phase shift keying (BPSK) global positioning system (GPS) signals. In this paper, we propose a low computational FFT-based fine acquisition technique, for binary offset carrier (BOC) modulated BPSK signals, that depending on the subcarrier-to-code chip rate ratio (SCR) selectively utilizes the computationally efficient frequency-domain realization of the BPSK-like technique and two-dimensional compressed correlator (BOC-TDCC) technique in the first stage in order to achieve a fast coarse acquisition and accomplishes a fine acquisition in the second stage. It is analyzed and demonstrated that the proposed technique requires much smaller mean fine acquisition computation (MFAC) than the conventional FFT-based BOC acquisition techniques. The proposed technique is one of the first techniques that achieves a fast FFT-based fine acquisition of BOC signals with a slight loss of detection probability. Therefore, the proposed technique is beneficial for the receivers to make a quick position fix when there are plenty of strong (i.e., line-of-sight) GNSS satellites to be searched.

Survey of Signal Design for Global Navigation Satellite Systems (GNSS 신호 설계 동향조사)

  • Jong Hyun Jeon;Jeonghang Lee;Jeongwan Kang;Sunwoo Kim;Jung-Min Joo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • In this paper, we investigate the signal design of six (USA, EU, Russia, China, Japan, and India) countries for Global Navigation Satellite Systems (GNSS). Recently, a navigation satellite system that is capable of high-precision and reliable Positioning, Navigation, Timing (PNT) services has been developed. Prior to system design, a survey of the signal design for other GNSS systems should precede to ensure compatibility and interoperability with other GNSS. The signal design includes carrier frequency, Pseudorandom Noise (PRN) code, modulation, navigation service, etc. Specifically, GNSS is allocated L1, L2, and L5 bands, with recent additions of the L6 and S bands. GNSS uses PRN code (such as Gold, Weil, etc) to distinguish satellites that transmit signals simultaneously on the same frequency band. For modulation, both Binary Phase Shift Keying (BPSK) and Binary Offset Carrier (BOC) have been widely used to avoid collision in the frequency spectrum, and alternating BOCs are adopted to distinguish pilot and data components. Through the survey of other GNSS' signal designs, we provide insights for guiding the design of new satellite navigation systems.

Several systems for 1Giga bit Modem

  • Park, Jin-Sung;Kang, Seong-Ho;Eom, Ki-Whan;Sosuke, Onodera;Yoichi, Sato
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1749-1753
    • /
    • 2003
  • We proposed several systems for 1Giga bit Modem. The first, Binary ASK(Amplitude Shift Keying) system has a high speed shutter transmitter and no IF(Intermediate Frequency) receiver only by symbol synchronization. The advantage of proposed system is that circuitry is very simple without IF process. The disadvantage of proposed system are that line spectrum occurs interference to other channels, and enhancement to 4-level system is impossible due to its large SNR degradation. The second, Binary phase modulation system has a high speed shutter transmitter and IF-VCO(IF-Voltage Controlled Oscillator) control by base-band phase rotation. Polarity of shutter window is changed by the binary data. The window should be narrow same as above ASK. The advantage of proposed system is which error rate performance is superior. The disadvantage of proposed system are that Circuitry is more complex, narrow pull-in range of receiver caused by VCO and spectrum divergence by the non-linear amplifier. The third, 4-QAM(Quadrature Amplitude Modulation)system has a nyquist pulse transmitter and IF-VCO control by symbol clock. The advantage of proposed system are that signal frequency band is a half of 1GHz, reliable pull-in of VCO and possibility of double speed transmission(2Gbps) by keeping 1GHz frequency-band. The disadvantage of proposed system are that circuit complexity of pulse shaping and spectrum divergence by the non-linear amplifier.

  • PDF

Development of Korean Joint Tactical Data Link System Based on CLIP (CLIP 기반의 한국형 합동전술데이터링크 체계 개발)

  • Kim, Seung-Chun;Lee, Hyung-Keun
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • In order to performing the joint operation of Korean army efficiently, informations about surveillance, reconnaissance, and situation awareness need to be possessed jointly. In the first development phase (basis type) of the Korean joint tactical data link system (JTDLS-K), essential tactical information and recognized situation are owned among platforms in common by using existing wireless terminals. In the second development phase (completion type) of the JTDLS-K, a JTDLS which can perform network centric warfare (NCW) will be developed in due consideration of technology development of the basis type and common technology maturity degree. This is a joint battlefield system that can show fighting power simultaneous and polysynthetically through providing command and control messages effectively to each platform, which is participating in the joint and combined operations. In this paper, the development of JTDLS-K with a common data processor based on common link integration processing (CLIP) is described. From the test results of the system presented in this paper, it is demonstrated that quadrature phase shift keying (QPSK) signals can be applied to the system.

Symbol Error Probability of a Physical Layer Network Coded System in Nakagami Fading Channels (나카가미 페이딩 채널에서 물리 계층 네트워크 부호화 시스템의 심볼 오류율)

  • Do, Phu Thinh;Wang, Jin-Soo;Park, Jin-Bae;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.8C
    • /
    • pp.645-654
    • /
    • 2012
  • In this paper, we consider a two-way relay (TWR) system, where two user nodes exchange their information within two transmission phases, by the help of a relay node adopting physical layer network coding. In the system, two users transmit their binary phase shift keying symbols simultaneously in the first phase, and the relay node decodes the XORed version of two user data and broadcasts it back to two users in the second phase. The performance of the system is analyzed in terms of the average end-to-end symbol error probability in Nakagami-m fading channels, for which a tight upper bound is derived in a closed form to provide an accurate and handy estimate on the performance. The results show that our upper bounds are almost indistinguishable from simulation results for various channel and system configurations. In addition, the optimal relay location and power allocation for various conditions can be obtained quickly with our analysis.

Impact of Sea Surface Scattering on Performance of QPSK (해면산란이 QPSK 성능에 미치는 영향)

  • Xue, Dandan;Seo, Chulwon;Park, Jihyun;Yoon, Jong Rak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1818-1826
    • /
    • 2014
  • Time-variant sea surface causes a forward scattering and Doppler spreading in received signal on underwater acoustic communication system. This results in time-varying amplitude, frequency and phase variation of the received signal. In such a way the channel coherence bandwidth and fading feature also change with time. Consequently, the system performance is degraded and high-speed coherent digital communication is disrupted. In this paper, quadrature phase shift keying (QPSK) performance is examined in two different sea surface conditions. The impact of sea surface scattering on performance is analyzed on basis of the channel impulse response and temporal coherence using linear frequency modulation (LFM) signal. The impulse response and the temporal coherence of the rough sea surface condition were more unstable and less than that of the calm sea surface condition, respectively. By relating these with time variant envelope, amplitude and phase of received signal, it was found that the bit error rate (BER) of QPSK are closely related to time variation of sea surface state.

Analysis of a TC-16ADPSK Performance for Transmitting Different Information on One Channel Simultaneously (TC-16ADPSK을 사용한 이종 정보 동시 전송용 변조방식의 성능 분석)

  • 이원석;강희훈;이성백
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.5
    • /
    • pp.71-76
    • /
    • 2000
  • A TC-16ADPSK scheme for transmitting different kinds of information simultaneously is proposed in this paper. The scheme is designed for simultaneously transmitting two kinds of Information on one channel. In signal mapping, a data of two kinds of information is used to phase modulation on Star-16APSK constellation and the other to amplitude modulation. In detection, each data independently recovers from mixing signal on each detector Therefore, we can transmit two kinds of Information on one channel can be transmitted efficiently. BER performance of the proposed scheme is analyzed on AWGN channel and Rayleigh fading channels on a computer with Matlab communication toolbox. On same SNR, the Gray code mapping has more 0.5-1.5dB coding gains than Ungerboeck's code mapping gains.

  • PDF

Performance Analysis of Dual-Layer Differential Precoding Technique Using 8-PSK Constellation (8-PSK 성운을 이용하는 이중계층 차분 선부호화 기법의 성능 분석)

  • Park, Noe-Yoon;Kim, Young-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.401-408
    • /
    • 2013
  • Dual-layer differential codebook using 8-PSK (phase shift keying) constellation as its codeword elements, is proposed for Long term evolution (LTE) and/or LTE-Advanced systems. Due to the temporal correlation of the adjacent channel matrices, the consecutive precoding matrices are likely to be similar. This approach quantize only the differential information of the channel instead of the whole channel subspace, which virtually increase the codebook size to realize more accurate quantization of the channel. Especially, the proposed codebook has the same properties of LTE release-8 codebook that is, constant modulus, complexity reduction, and nested property. The mobile station can be designed by using less expensive non-linear amplifier utilizing constant modulus property. Computer simulations show that the capacity of the proposed dual-layer codebook performs almost 1.2dB better than those of any other non-differential codebooks with the same amount of feedback information.

Sea Trial Results of the Direct Sequence Spread Spectrum Underwater Acoustic Communication in the East Sea (동해에서 직접 수열 대역확산 수중음향통신 기법의 해상실험 결과)

  • Han, Jeong-Woo;Kim, Ki-Man;Yun, Yeong-Jung;Mun, Hyeon-Uk;Chun, Seung-Yong;Son, Kweon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.7
    • /
    • pp.441-448
    • /
    • 2012
  • Spread spectrum provides the minimized inter-symbol interference, the low probability of intercept and the multiple access capability. This paper presents a direct sequence spread spectrum with carrier/timing recovery and equalizer which compensates the delay spread caused by multipath transmission. When the sea trials were performed in Korean East Sea, the bit error rates of QPSK and direct sequence spread spectrum are $1.46{\times}10^{-2}$ and $5.17{\times}10^{-4}$ at 3 km source-receiver range, respectively.