• 제목/요약/키워드: phase transformation temperature

검색결과 508건 처리시간 0.025초

지르코니아 용사코팅의 상변화에 따른 마멸특성 (Wear characteristics of plasma sprayed yttria-stabilized zirconia coating as phase transformation)

  • 박찬;채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.322-330
    • /
    • 2001
  • The plasma-sprayed 8%Y$_2$O$_3$-Zirconia coating was studied to know the relationship between phase transformation and wear properties after several heat treatment. Wear tests were carried out with ball on disk on 50N, 70N, 90N. The specimen in this study was cast iron and tests were performed on room temperature. The transformation of phase and residual stress was measured by x-ray diffraction method(XRD) and worn surface were observed by SEM.

  • PDF

권취 공정 중 열연 강판의 잔류 응력 해석 (Residual Stress Analysis of Rot Rolled Strip in Coiling Process)

  • 구진모;김홍준;이재곤;황상무
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.302-307
    • /
    • 2003
  • Hot rolled strip is cooled by air and water in Run-Out-Table. In this process, phase transformation and shape deformation occurs due to temperature drop. Because of un-ideal cooling condition of ROT, irregular shape deformation and phase transformation arise in the strip. which affect the strip property and lead to the residual stress of strip. And these exert effects on the following processes, coiling process, coil cooling process, and re-coiling process. Through these processes, the residual stress becomes higher and severe. For the prediction of residual stress distribution and shape deformation of final product, Finite element(FE) based model was used. It consists of non-steady state heat transfer analysis, elasto-plastic analysis. thermodynamic analysis and phase transformation kinetics. Successive FEM simulation were applied from ROT process to coil cooling process. In each process simulation, previous process simulation results were used for the next process simulation. The simulation results were matched well with the experimental results.

티타늄과 그 합금의 마찰교반용접기술 현황 (Recent R&D status on friction stir welding of Ti and its alloys)

  • 강덕수;이광진
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.1-7
    • /
    • 2015
  • This article describes the basic technical concepts for applying the friction stir welding (FSW) process to titanium and its alloys. Titanium and its alloys are demanding applications of FSW. During FSW, a protective atmosphere is needed at the welding region to prevent the joints from oxidation due to the absorption of interstitial elements (O, N, and H) at high temperature. The process parameters for FSW have great influence on the microstructure and properties of the joints. No phase transformation occurred in CP Ti because FSW was achieved below the ${\beta}$-transus temperature. Therefore, the mechanical properties of the joints with CP Ti were governed by recrystallization and grain refinement. Furthermore, the strong crystallographic texture indicating <0001>//ND formed in the stir zone. On the other hands, the phase transformation occurred in Ti-6Al-4V alloy because the process temperature reached above ${\beta}$-transus temperature. For this reason, the mechanical properties of the joints with Ti-6Al-4V alloy were altered by not only recry stallization and grain refinement but also phase transformation during FSW. Engineers who want to get sound FSW joints with Ti-6Al-4V alloy have to pay attention to the control about process conditions.

Fe계 Norem 02 경면처리 합금의 고압.수중 마모거동 (Sliding Wear Behavior of Fe-Base Norem 02 Hardfacing Alloy in Pressurized Water)

  • 이권영;오영민;이민우;김선진
    • 한국재료학회지
    • /
    • 제12권8호
    • /
    • pp.608-612
    • /
    • 2002
  • The sliding wear behavior of an iron-base NOREM 02 hardfacing alloy was investigated in the temperature range of $25~250^{\circ}C$ under a contact stress of 103MPa (15ksi). With increasing temperature, the wear loss of Norem 02 in water increased slightly up to $180^{\circ}C$ at which Norem 02 showed the wear loss of 2.1mg. The wear resistance of Norem 02 resulted from the surface hardening due to the strain-induced phase transformation from austenite to $\alpha$'martensite during sliding wear. The wear loss of Norem 02 was smaller in water compared to air at same temperature because the water could be served as a sort of lubricant. The wear mode of NOREM 02 changed abruptly to severe adhesive wear at $190^{\circ}C$ and galling occurred above $200^{\circ}C$. It was caused that the strain- induced phase transformation took place below $180^{\circ}C$ while not above $190^{\circ}C$. Therefore, Norem 02 was considered to be inadequate at high temperature service area.

Biotribological Properties of TZP/Al2O3 Ceramics for Biomechanical Applications

  • Lee, Deuk-Yong;Lee, Se-Jong;Jang, Ju-Woong;Kim, Hak-Kwan;Kim, Dae-Joon
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.525-529
    • /
    • 2003
  • Biotribological properties, such as wear rate and friction coefficient, of 3Y-TZP and Low Temperature Degradation (LTD) free materials were investigated via a ball(SiC)-on-plate sliding wear test to evaluate the relationship between wear mechanism and phase transformation. Wear test was conducted with a sliding speed of 0.035 m/s at room temperature and at 25$0^{\circ}C$ in air under a normal load of 49 N, respectively. Although friction coefficient of 3Y-TZP was the lowest due to the fine grain size, the highest wear loss and rate were observed due to the debris of monoclinic grains introduced during sliding and their values increased drastically with raising temperature. However, the biotribological properties of LTD-free materials were insensitive to temperature due to the inertness of the phase transformation, suggesting that they may be applicable to the biomechanical parts.

TTT/CCT 데이터를 이용한 저합금강의 죠미니 경화능 곡선 계산 (Calculation of Jominy Hardenability Curve of Low Alloy Steels from TTT/CCT data)

  • 정민수;손윤호
    • 열처리공학회지
    • /
    • 제32권1호
    • /
    • pp.17-28
    • /
    • 2019
  • Jominy hardenability curves of low alloy steel containing less than 5 wt.% of alloying elements in total were calculated by applying Scheil's rule of additivity to pre-calculated isothermal transformation curve. Isothermal transformation curve for each phase in steel was approximated as a simple mathematical equation by using Kirkaldy's approach and all coefficients in the equation were estimated from experimental temperature-time-transformation (TTT) and/or continuous cooling transformation (CCT) data in the literature. Then jominy test with simple boundary conditions was performed in computer by applying the finite difference scheme. The resultant cooling curves at each location along a longitudinal direction of Jominy bar were applied to calculate phase fractions as well as mechanical properties such as micro Vickers hardness. The simulated results were compared with experimental CCT data and Jominy curves in the literature.

대형 단조품 담금질 과정의 조직 및 응력분포 해석 (Analysis of Heat Treatment Process for Large Forgings Considering Phase Transformation)

  • 이정호;이부윤;전제영;이명렬;조종래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.964-968
    • /
    • 1996
  • The demands of size and quality of large steel shaft forgings for ship building, power plant, steel plant, etc. are rapidly increasing, and some of these productions are manufactured from ingot weighing more than 300 tons. For use as rotating components. shafts require toughness, strength and homogeneity, and therefore are produced through a variety of heat treatments. According to the increase of ingot size, micro- and macrosegregation and also mass effect of the product increase. Thus, special care should be paid to the heat treatment of such large shaft forgings. In this paper, the heat treatment of large shaft forgings such as rotor and back-up roll is calculated using the commercial finite element code SYSWELD. Calculated distributions of temperature and phase are compared with experimental data. The continuous cooling transformation diagram, thermal and mechanical properites of each phase are used. The phase proportion, hardness and residual stress during water quenching are discussed.

  • PDF

변태유기소성강의 소성변형에 미치는 2차상의 형상과 고용탄소의 영향 (Effects of the Morphology of Secondary Phases and Carbon Content on the Plastic Deformation of TRIP steel)

  • 홍승갑
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.116-119
    • /
    • 1999
  • The effects of secondary phase morphology and carbon content on the plastic deformation of 0.2C-1.5Si-1.5mn TRIP(TRansformed Induced Plasticity) steel have been investigated at various annealing and bainitic transformation temperatures. The morphology of ferrite and secondary phases was controlled by the annealing temperature and the distribution of secondary phase was controlled by the bainitic transformation temperature. The secondary phase contributed to elongation and/or UTS depending on the ferrite morphology which determined deformation mode simple elongation or rotation of secondary phase along the tensile direction In case of the sample containing the granular type retained austenite the elongation was improved as carbon stabilized the austenite phase. If the film-shape retained austenite in acicular ferrite was dominant however UTS was enhanced as the transformed martensite was hardened by carbon.

  • PDF

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim;Park, Il Han;Moon, Kyung Hwan;Kim, Dong Hwan;Jung, Seung Il;Yoon, Young Soo
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.618-624
    • /
    • 2018
  • We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

고온자전합성법으로 제조된 다공성 TiNi 생체재료의 기공구조 및 기계적 특성 (Pore Structure and Mechanic:11 Property of Porous TiNi Biomaterial Produced by Self-Propagating High-Temperature Synthesis)

  • 김지순;강지훈;양석균;정순호;권영순
    • 한국분말재료학회지
    • /
    • 제10권1호
    • /
    • pp.34-39
    • /
    • 2003
  • Porous TiNi bodies were produced by Self-propagating High-temperature Synthesis (SHS) method from a powder mixture of Ti and Ni. Porosity, pore size and structure, mechanical property, and transformation temperature of TiNi product were investigated. The average porosity and pore size of produced porous TiNi body are 63% and $216\mutextrm{m}$, respectively. XRD analysis showed that the major phase of produced TiNi body is B2 phase. Its average fracture strength and elastic modulus measured under dry condition were $22\pm2$ MPa and $0.18\pm0.01$GPa, respectively. It could be strained up to 7.3 %. The transformation temperatures determined by DSC showed the $M_s$ temperature of $67^{\circ}C$ and $A_f$ temperature of $99^{\circ}C$.