• Title/Summary/Keyword: phase calibration

Search Result 502, Processing Time 0.024 seconds

Quantitative determination of inosine 5'-monophosphate dehydrogenase activity in human peripheral blood mononuclear cells by ion-pair reversed-phase high-performance liquid chromatography (이온쌍 역상 HPLC를 이용한 인체 말초혈액단핵구에서 이노신 5'-일인산 탈수소효소 활성의 정량적 측정)

  • Shin, Hye-Jin;Kwon, Soon-Ho;Park, Ji-Myeong;Kwon, Soon-Hyo;Lee, Kyoung-Ryul;Kim, Young-Jin;Lee, Sang-Hoo
    • Analytical Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.531-536
    • /
    • 2010
  • A quantitative analytical method has been established for the measurement of inosine 5'-monophosphate dehydrogenase (IMPDH) activity in human peripheral blood mononuclear cells (PBMCs) by ion-pair reversed-phase high performance liquid chromatography equipped with ultraviolet detection (HPLC/UV). IMPDH is a ${\beta}$-nicotinamide adenine dinucleotide hydrate (NAD+)-dependent dehydrogenase in which the enzyme converts inosine 5'-monophosphate (IMP) into xanthosine 5'-monophosphate (XMP). Its activity was measured by quantifying a HPLC chromatogram corresponding to XMP produced during the incubation of lysed PBMCs with IMP as a substrate and $NAD^+$ as a coenzyme. XMP produced was detected at a wavelength of 260 nm. The mobile phase was composed of a mixture of 37 mM potassium dihydrogen phosphate containing 7 mM tetra-n-butylammonium hydrogen sulfate adjusted to pH 5.5 and methanol (85:15, v/v) with a flow rate of 1 mL/min. The calibration curve was linear ($r^2$=0.999999) in the range of $0.2-50.0\;{\mu}M$ and the limit of quantification (LOQ) was $0.2\;{\mu}M$. The intra- and inter-day precisions were between 0.88-1.47% and 0.85-5.24%, respectively. The intra- and inter-day accuracies were between 98.74-99.99% and 99.95-101.65%, respectively. IMPDH activity in 11 Korean healthy volunteers ranged from 18.29 to 36.60 nmol/h/mg protein (mean = $27.70{\pm}6.28\;nmol/h/mg$ protein).

Application of the Artificial Mussel for Monitoring Heavy Metal Levels in Seawater of the Coastal Environments, Korea (Artificial mussel을 이용한 우리나라 연안환경의 중금속 오염도 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Kyung-Tae;Lee, Seung-Yong;Kim, Eun-Soo;Lee, Jung-Moo;Wu, Rudolf S.S.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.2
    • /
    • pp.131-145
    • /
    • 2014
  • The new passive sampler called "artificial mussel (AM)" offers a potential device to study the spatiotemporal changes of metal concentrations in different marine environment worldwide. The purpose of this study is to characterize metal (Cd, Cr, Cu, Zn, Pb) accumulation on the AM and transplanted mussel (Mytilus edulis) at 5 sites of Lake Shihwa. Both the AMs and mussels showed increasing concentrations of all five metals during the 12 weeks exposure period. Higher concentrations of Zn were showed in both the AMs and Mytilus edulis relative to other metals. The AMs accumulated higher concentrations of Cd, Cr and Zn, but they presented lower levels of Cu and Pb than Mytilus edulis. The correlations for Cd, Cu and Pb were statistically significant between the AMs and Mytilus edulis, indicating that the accumulation patterns for those metals were similar. However, no similarities for Cr and Zn were observed between two monitoring devices across all of the sites in Shihwa Lake. According to relationship for metal concentrations between dissolve phase in seawater and both the AMs and Mytilus edulis, the AMs for Cd, Cu and Zn represent more metal contamination than Mytilus edulis. Our results indicated that the AMs give a better resolution to reveal the spatial differences in dissolved metal concentration. This study suggests that the AMs can provide a time-integrated estimate of metal pollution in marine environments as well as freshwater environments of Korea.

A Study on the Analysis of Five Artificial Sweetners in Beverages by HPLC/MS/MS (HPLC/MS/MS를 이용한 음료류 중 인공감미료 동시분석에 관한 연구)

  • Lee, Seong-Bong;Yong, Kum-Chan;Hwang, Sun-Il;Kim, Young-Su;Jung, You-Jung;Seo, Mi-Young;Lee, Chang-Hee;Sung, Jin-Hee;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.327-333
    • /
    • 2014
  • A method for analysis of five artificial sweetners (sodium saccharin, aspartame, acesulfame-K, sucralose, cyclamate) in beverage samples was developed using high-performance liquid chromatography/triple quadrupole mass spectrometry (HPLC/MS/MS). The method uses a single-step dilution for sample preperation. Seperation was achieved on a $C_{18}$ column ($2.1{\times}150mm$, $3.5{\mu}m$) with A- 2% methanol (1 mM ammonium acetate), B-95% methanol (1 mM ammonium acetate) as mobile phase with gradient mode. The quantitation of target compounds was performed by external calibration in selected reaction monitorning (SRM) mode. The coefficient of determination of calibration curve for sodium saccharin, aspartame, acesulfame-K, sucralose and cyclamate were 0.9957, 0.9991, 0.9943, 0.9982 and 0.9948, respectively. The limits of detection (LODs) and limits of quantitation (LOQs) were in the range of 0.001~0.022 mg/L and 0.004~0.073 mg/L, repectively. Recoveries for beverage samples were in the range of 92.76~113.50% with RSD < 10.91%. The method has applied to the determination of the five sweetners in 102 beverage samples. Three artificial sweetners-aspartame, acesulfame-K, sucralose were detected from 42 samples. Sodium saccharin and cyclamate were not detected in all samples.

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.

Simultaneous determination of preservatives in sausages using liquid chromatography with electrospray ionization tandem mass spectrometry (LC-MS/MS를 이용한 소시지 중 보존료 동시분석)

  • Koh, Ba-Ra-Da;Kim, Ji-Yeon;Jang, Mi-Sun;Seo, Doo-Ri;Jung, Bo-Ram;Shin, Ji-Hyun;Lim, Jin-Taek;Kim, Yong-Hwan;Kim, Eun-Sun
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • A simultaneous determination method was developed for nine preservatives (benzoic acid, sorbic acid, dehydroacetic acid, methyl-, ethyl-, isopropyl-, propyl-, isobutyl- and butyl-parabens) in sausage by liquid chromatography with electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Each parameter was established by multiple reaction monitoring in negative mode. Separation was achieved on a phenyl-hexyl ($2.5{\mu}m$, $2.1{\times}150mm$, Waters) with A-20 mM ammonium acetate containing 0.1% acetic acid in water, B-Acetonitrile as mobile phase with gradient mode at a flow rate of 0.3 mL/min. The developed method was validated for specificity, linearity, accuracy and precision in sausages samples. Linearity was over 0.998 with calibration curve of the mixed standards. The mean recoveries from sausages fortified at the level of 2.0~10.0 mg/L were in range of 98.60~109.16% with RSDs lower than 8.93%. The limits of detection (LOD) and the limits of quantification (LOQ) were in the range between 0.0003~0.085 mg/L and 0.01~0.257 mg/L, respectively. Intra-day precision and inter-day precision were 0.45~6.16% and 2.81~13.33%, respectively. Using presently developed determination method, 33 field sausage samples from Gwangju city in Korea were screened over nine preservatives. As a result, no preservatives were detected in all samples.

Effect of Thermal Treatments on Flavonoid Contents in Domestic Soybeans (국내산 대두(Glycine max. Merr)자원의 플라보노이드 대사체 동정 및 열처리 효과)

  • Shin, Jae-Hyeong;Kim, Heon-Woong;Lee, Min-Ki;Jang, Ga-Hee;Lee, Sung-Hyen;Jang, Hwan-Hee;Hwang, Yu-Jin;Park, Keum-Yong;Song, Beom-Heon;Kim, Jung-Bong
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • BACKGROUND: Soy isoflavones, structurally similar to endogenous estrogens, may affect human body through both hormonally mediated and non-hormonally related mechanisms. Heat processing could change chemical compositions. The effects of different thermal processes, boiling and HTHP(high temperature and high pressure) on the composition of isoflavone compounds and total amount of domestic soybeans were investigated in this study. METHOD AND RESULTS: Three different kinds of soybean samples were collected from RDA-Genebank. The samples were extracted using methanol, distilled water, and formic acid based solvent. Also the same solvents were used for mobile phase in UPLC/ToF/MS. All of the isoflavone compounds were analyzed based on the aglycone type of external standard for quantification. The standard calibration curve presented linearity with the correlation coefficient R2 > 0.98, analysed from 1 to 50 ppm concentration. The total isoflavone contents does not change by treatment within the same breed. While "boiling" and "HTHP" processes tend to increase the contents of aglycone and ${beta}$-glucosides, "fresh" soybeans retained the high concentration of malonylglucosides. CONCLUSION: These results have to be considered while developing an effective functional food, from the health while point of view using soybeans.

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Determination of Precipitable Water Vapor from Combined GPS/GLONASS Measurements and its Accuracy Validation (GPS/GLONASS 통합관측자료를 이용한 가강수량 산출과 정확도 검증)

  • Sohn, Dong Hyo;Park, Kwan Dong;Kim, Yeon Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.95-100
    • /
    • 2013
  • Several observation equipments are being used for determination of the water vapor content and precipitable water vapor (PWV) because the water vapor is highly variable temporally and spatially. In this study, we used GNSS systems such as GPS and GLONASS in standalone and combined modes to compute PWV and validated their accuracy with respect to the results of other water-vapor monitoring systems. The other systems used were radiosonde and microwave radiometer, and the comparisons were convenient because all three systems were collocated at the test site. The differences of PWW were in the range of 0.6-3.4 mm in the mean sense, and their standard deviations were 1.0-3.8 mm. The relatively large difference of GNSS compared with the other two systems were believed to be caused by the fact that the GNSS antenna used in this study was the kind for which the international standard of phase center variations (PCV) calibration is not available. We expect better accuracy of PWV determination and improved availability of it through integrated data processing of GPS/GLONASS when an appropriate antenna with PCV correction model is used.

Effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield units of hydroxyapatite in virtual monochromatic images obtained with dual-energy CT

  • Jeong, Dae-Kyo;Lee, Sam-Sun;Kim, Jo-Eun;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.273-279
    • /
    • 2019
  • Purpose: This study was performed to investigate the effects of energy level, reconstruction kernel, and tube rotation time on Hounsfield unit (HU) values of hydroxyapatite (HA) in virtual monochromatic images (VMIs) obtained with dual-energy computed tomography (DECT)(Siemens Healthineers, Erlangen, Germany). Materials and Methods: A bone density calibration phantom with 3 HA inserts of different densities(CTWATER®; 0, 100, and 200 mg of HA/㎤) was scanned using a twin-beam DECT scanner at 120 kVp with tube rotation times of 0.5 and 1.0 seconds. The VMIs were reconstructed by changing the energy level (with options of 40 keV, 70 keV, and 140 keV). In order to investigate the impact of the reconstruction kernel, virtual monochromatic images were reconstructed after changing the kernel from body regular 40 (Br40) to head regular 40 (Hr40) in the reconstruction phase. The mean HU value was measured by placing a circular region of interests (ROIs) in the middle of each insert obtained from the VMIs. The HU values were compared with regard to energy level, reconstruction kernel, and tube rotation time. Results: Hydroxyapatite density was strongly correlated with HU values(correlation coefficient=0.678, P<0.05). For the HA 100 and 200 inserts, HU decreased significantly at increased energy levels(correlation coefficient= -0.538, P<0.05) but increased by 70 HU when using Hr40 rather than Br40 (correlation coefficient=0.158, P<0.05). The tube rotation time did not significantly affect the HU(P>0.05). Conclusion: The HU values of hydroxyapatite were strongly correlated with hydroxyapatite density and energy level in VMIs obtained with DECT.

Comparison of Extraction Methods for Determination of Vitamin K1 in Vegetables (채소류의 비타민 K1 분석을 위한 추출방법의 비교)

  • Kim, Hyeongi;Choi, Youngmin;Cho, Young-Sook;Sung, Jeehye;Ham, Hyeonmi;Lee, Junsoo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.11
    • /
    • pp.1791-1795
    • /
    • 2014
  • The objective of this study was to compare two extraction methods for determination of vitamin K1 (phylloquinone) in vegetables. In addition, analytical method validation parameters such as accuracy, precision, limit of detection (LOD), limit of quantification (LOQ), and linearity were calculated to ensure the method's validity. Vitamin K1 was quantified by reversed-phase HPLC using post-column derivatization and fluorescence detection ($Ex{\lambda}=243nm$, $Ex{\lambda}=430nm$). Higher analytical values were observed using solvent extraction compared to those from the enzyme extraction method. The results from the method validation showed high linearity in the calibration curve with a coefficient of correlation ($R^2$) of 0.9994. The LOD and LOQ were 0.1335 and 0.2784 ng/injection volume ($50{\mu}L$), respectively. The inter-day precision and inter-day precision were 2.0% and 2.1%, respectively. Overall recovery was close to 100% (n=5). The phylloquinone contents ranged from 9.42 to $1,212.57{\mu}g/100g$. Our study provides reliable data on the phylloquinone contents in commonly consumed vegetables in Korea.