• Title/Summary/Keyword: phantom study

Search Result 1,479, Processing Time 0.025 seconds

Comparative Analysis of Cartesian Trajectory and MultiVane Trajectory Using ACR Phantom in MRI : Using Image Intensity Uniformity Test and Low-contrast Object Detectability Test (ACR 팬텀을 이용한 Cartesian Trajectory와 MultiVane Trajectory의 비교분석 : 영상강도 균질성과 저대조도 검체 검출률 test를 사용하여)

  • Nam, Soon-Kwon;Choi, Joon-Ho
    • Journal of radiological science and technology
    • /
    • v.42 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • This study conducted a comparative analysis of differences between cartesian trajectory in a linear rectangular coordinate system and MultiVane trajectory in a nonlinear rectangular coordinate system axial T1 and axial T2 images using an American College of Radiology(ACR) phantom. The phantom was placed at the center of the head coil and the top-to-bottom and left-to-right levels were adjusted by using a level. The experiment was performed according to the Phantom Test Guidance provided by the ACR, and sagittal localizer images were obtained. As shown in Figure 2, slices # 1 and # 11 were scanned after placing them at the center of a $45^{\circ}$ wedge shape, and a total of 11 slices were obtained. According to the evaluation results, the image intensity uniformity(IIU) was 93.34% for the cartesian trajectory, and 93.19% for the MultiVane trajectory, both of which fall under the normal range in the axial T1 image. The IIU for the cartesian trajectory was 0.15% higher than that for the MultiVane trajectory. In axial T2, the IIU was 96.44% for the cartesian trajectory, and 95.97% for the MultiVane trajectory, which fall under the normal range. The IIU for the cartesian trajectory was by 0.47% higher than that for the MultiVane trajectory. As a result, the cartesian technique was superior to the MultiVane technique in terms of the high-contrast spatial resolution, image intensity uniformity, and low-contrast object detectability.

Surgical prevention of terminal neuroma and phantom limb pain: a literature review

  • Bogdasarian, Ronald N.;Cai, Steven B.;Tran, Bao Ngoc N.;Ignatiuk, Ashley;Lee, Edward S.
    • Archives of Plastic Surgery
    • /
    • v.48 no.3
    • /
    • pp.310-322
    • /
    • 2021
  • The incidence of extremity amputation is estimated at about 200,000 cases annually. Over 25% of patients suffer from terminal neuroma or phantom limb pain (TNPLP), resulting in pain, inability to wear a prosthetic device, and lost work. Once TNPLP develops, there is no definitive cure. Therefore, there has been an emerging focus on TNPLP prevention. We examined the current literature on TNPLP prevention in patients undergoing extremity amputation. A literature review was performed using Ovid Medline, Cochrane Collaboration Library, and Google Scholar to identify all original studies that addressed surgical prophylaxis against TNPLP. The search was conducted using both Medical Subject Headings and free-text using the terms "phantom limb pain," "amputation neuroma," and "surgical prevention of amputation neuroma." Fifteen studies met the inclusion criteria, including six prospective trials, two comprehensive literature reviews, four retrospective chart reviews, and three case series/technique reviews. Five techniques were identified, and each was incorporated into a targetbased classification system. A small but growing body of literature exists regarding the surgical prevention of TNPLP. Targeted muscle reinnervation (TMR), a form of physiologic target reassignment, has the greatest momentum in the academic surgical community, with multiple recent prospective studies demonstrating superior prevention of TNPLP. Neurorrhaphy and transposition with implantation are supported by less robust evidence, but merit future study as alternatives to TMR.

Evaluation of the Resolution Characteristics by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 해상력 특성 평가)

  • Min, Jung-Whan;Jeong, Hoi-Woun;Han, Ji-Hyun;Lee, Si-Nae;Kim, Min-Ji;Kim, Seung-Chul
    • Journal of radiological science and technology
    • /
    • v.45 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • This study was purpose to quantitative assessment of the resolution characteristics by using American college of radiology(ACR) phantom for magnetic resonance imaging (MRI). The MRI equipment was used (Achiva 3.0T MRI, Philips system, Netherlands) and the head/neck matrix shim SENSE head coil were 32 channels(elements) receive MR coil. And the MRI equipment was used (Discovery MR 750, 3.0T MRI, GE medical system, America) and the head/neck matrix shim MC 3003G-32R 32-CH head coil were receive MR coil. As for the modulation transfer function(MTF) comparison result by using ACR magnetic resonance imaging phantom, the MTF value of the ACR standard T2 image in GE equipment is 0.199 when the frequency is 1.0 mm-1 and the MTF value of the hospital T2 image in Philips equipment is 0.528. It was used efficiently by using a general sequence more than the standard sequence method using the ACR phantom. In addition it is significant that the quantitative quality assurance evaluation method for resolution characteristics was applied mutatis mutandis, and the result values of the physical image characteristics of the 3.0T MRI device were presented.

Evaluation of the Noise Power Spectrum by Using American College of Radiology Phantom for Magnetic Resonance Imaging (자기공명영상에서 ACR 팬텀을 이용한 잡음전력스펙트럼 평가)

  • Jung-Whan Min;Hoi-Woun Jeong
    • Journal of radiological science and technology
    • /
    • v.47 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • This study was purpose to quantitative evaluation of comparison of the image intensity uniformity and noise power spectrum (NPS) by using American college of radiology (ACR) phantom for magnetic resonance imaging (MRI). The MRI was used achiva 3.0T MRI and discovery MR 750, 3.0T, the head and neck matrix shim SENSE head coil were 32 channels receive MR coil. The MRI was used parameters of image sequence for ACR standard and general hospital. NPS value of the ACR standard T2 vertical image in GE equipment was 7.65E-06 when the frequency was 1.0 mm-1. And the NPS value of the ACR hospital T1 region of interest (ROI) 9 over all vertical image in Philips equipment was 9E-08 when the frequency was 1.0 mm-1 and the NPS value of the hospital T2 ROI 9 over all vertical image in Philips equipment was 1.06E-07 when the frequency was 1.0 mm-1. NPS was used efficiently by using a general hospital vertical sequence more than the standard vertical sequence method by using the ACR phantom. Furthermore NPS was the quantitative quality assurance (QA) assessment method for noise and image intensity uniformity characteristics was applied mutatis mutandis, and the results values of the physical imaging NPS of the 3.0T MRI and ACR phantom were presented.

Basic Dose Response of Fluorescent Screen-based Portal Imaging Device (섬광판을 사용하는 조사문영상기구의 기본적인 선량반응성)

  • Yeo, In-Hwan J.;Yohannes, Yonas;Zhu,Yunping
    • Radiation Oncology Journal
    • /
    • v.17 no.3
    • /
    • pp.249-255
    • /
    • 1999
  • Purpose : The purpose of this study is to investigate fundamental aspects of the dose response of fluorescent screen-based electronic portal imaging devices (EPIDS). Materials and Methods : We acquired scanned signal across portal planes as we varied the radiation that entered the EPID by changing the thickness and anatomy of the phantom as well as the air gap between the phantom and the EPID. In addition, we simulated the relative contribution of the scintillation light signal in the EPID system. Results : We have shown that the dose profile across portal planes is a function of the air gap and phantom thickness. We have also found that depending on the density change within the phantom geometry, errors associated with dose response based on the EPID scan can be as high as $7\%$. We also found that scintillation light scattering within the EPID system is an important source of error. Conclusion : This study revealed and demonstrated fundamental characteristics of dose response of EPID, as relative to that of ion chambers. This study showed that EPID based on fluorescent screen cannot be an accurate dosimetry system.

  • PDF

Study on Changes in Shape of Denatured Area in Skull-mimicking Materials Using Focused Ultrasound Sonication

  • Min, JeongHwa;Kim, JuYoung;Jung, HyunDu;Kim, JaeYoung;Noh, SiCheol;Choi, HeungHo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.1
    • /
    • pp.28-34
    • /
    • 2014
  • Recently, ultrasound therapy has become a new and effective treatment for many brain diseases. Therefore, skull-mimicking phantoms have been developed to simulate the skull and brain tissue of a human and allow further research into ultrasound therapy. In this study, the suitability of various skull-mimicking materials(HDPE, POM C, Acrylic) for studies of brain-tumor treatments was evaluated using focused ultrasound. The acoustic properties of three synthetic resins were measured. The skull-mimicking materials were then combined with an egg white phantom to observe the differences in the ultrasound beam distortion according to the type of material. High-intensity polyethylene was found to be suitable as a skull-mimicking phantom because it had acoustic properties and a denatured-area shape that was close to those of the skull,. In this study, a skull-mimicking phantom with a multi-layer structure was produced after evaluating several skull-mimicking materials. This made it possible to predict the denaturation in a skull in relation to focused ultrasound. The development of a therapeutic protocol for a range of brain diseases will be useful in the future.

TA Study on Patient Exposure Dose Used the Phantom for Interventional Procedure (중재적 시술 시 팬텀을 이용한 환자의 피폭선량 분석)

  • Kang, Byung-Sam;Dong, Kyung-Rae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.2
    • /
    • pp.71-76
    • /
    • 2011
  • Because interventional procedure operates looking at premier as real time when perate intervention enemy, by patient is revealed during suitableness time in radiation, side effect such as radiation injury of skin is apt to happen. It established by purpose of study that measure exposure dose that patient receives about these problem, and find solution for radiation injury and repletion method. In this study, we used Rando phantom of identical structure with the human body which becomes accomplished with 4 branch ingredient of the attempt and system equivalent material them and absorbed dose were measured by TLD. According to the laboratory, it shows that operations such as TFCA procedure or uterine myoma embolization are more dangerous than TACE procedure. If both operations are inspected during a short time, it is not affected in being bombed. However, it can lead to palliative agenesis or depilate, definitive agenesis only if operations are repeated more than three times. Dose distibution based on experiment, to reduce radiation exposure to patients result from reduction of scatter ray as we control field size of radiation and protection of side organs except for tumor. also we knew that we can protect patients form radiation exposure, if we increas SOD and decrease SID.

  • PDF

The Evaluation of Image Quality and Radiation Dose in Multi-Detector CT (MDCT에서 화질과 방사선량에 관한 연구)

  • Han, Dong-Kyoon;Yang, Han-Joon;Kim, Moon-Chan;Ko, Shin-Gwan
    • Journal of radiological science and technology
    • /
    • v.30 no.2
    • /
    • pp.129-138
    • /
    • 2007
  • The Purpose of this study is to suggest the basic data for making good quality image and maintaining equipment homeostasis by accepting image quality evaluation and radiation dose evaluation in Multi-detector CT. In this study we surveyed 14 CT equipments in Seoul. The results obtained were as follows ; CT number was $0.56{\pm}0.70\;HU$. Noise was $0.39{\pm}0.09\;HU$. Uniformity was $1.08{\pm}0.52\;HU$. High contrast resolution was $0.48{\pm}0.05\;mm$ and low contrast resolution was $3.65{\pm}1.16\;mm$. For CTDI, the central part and the peripheral part of head phantom were $43.2{\pm}15.4\;mGy$ and $45.6{\pm}17.5\;mGy$, respectively. For body phantom, the central part and the peripheral part of head phantom were $13.5{\pm}4.5$ and $29.2{\pm}10.2\;mGy$, respectively. CTDIw was $44.8{\pm}16.8\;mGy$ and CTDIw/100 mAs was $18.8{\pm}5.3\;mGy$ using head phantom. CTDIW was $24.0{\pm}8.3\;mGy$ and CTDIw/100 mAs was $10.1{\pm}2.5\;mGy$ using body phantom. Therefore, CT number, noise, high contrast resolution, low contrast resolution, CTDI, CTDIw and CTDIw/100 mAs of MDCT were showed excellently in all equipments.

  • PDF

Evaluation of Virtual Grid Software (VGS) Image Quality for Variation of kVp and mAs (관전압과 관전류량 변화에 대한 가상 그리드 소프트웨어(VGS) 화질평가)

  • Chang-gi Kong
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.5
    • /
    • pp.725-733
    • /
    • 2023
  • The purpose of this study is to evaluate the effectiveness of virtual grid software (VGS). The purpose of this study is to evaluate the changes in energy and object thickness by dividing the use of VGS into two cases (Without-VGS) without using a movable grid. We attempted to determine the effectiveness of VGS by acquiring images using a chest phantom and a thigh phantom and analyzing SNR and CNR. In the chest phantom and femoral phantom, the tube flow was fixed at 2.5 mAs, and the tube voltage was changed by 10 kVp from 60 to 100 kVp to measure SNR and CNR, and SNR was about 1.09 to 8.86% higher in the chest phantom than in Without-VGS, and CNR was 4.18 to 14.56% higher in the VGS than in Without-VGS. And in the femoral phantom, SNR was about 9.78 to 18.05% higher in VGS than in Without-VGS, and CNR was 21.07 to 44.44% higher in VGS than in Without-VGS. The tube voltage was fixed at 70 kVp in the chest phantom and the femoral phantom, and the amount of tube current was changed at 2.5 to 16 mAs, respectively, and after X-ray irradiation, SNR and CNR were measured in the chest phantom, which was about 1.49 to 11.11% higher in VGS than in Without-VGS, and CNR was 4.76 to 13.40% higher in VGS than in Without-VGS. And in the femoral phantom, SNR was about 2.22 to 17.38% higher in VGS than in Without-VGS, and CNR was 13.85 to 40.46% higher in VGS than in Without-VGS. Therefore, if an inspection is required with a mobile X-ray imaging device, it is believed that good image quality can be obtained by using VGS in an environment where it is difficult to use a mobile grid, and it is believed that the use of mobile X-ray devices can be increased.

The Theoretical Study of Absorbed Dose Distributions in Water Phantom Irradiated by High Energy Photon Beam (물팬톰에 조사된 고에너지 광자선의 선량 분포 특성에 관한 이론적 고찰)

  • 최동락;이명자
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.75-84
    • /
    • 1990
  • We have claculated the absorbed dose distributions in water phantom irradiated by high energy photon beam. PDD (Percent Depth Dose) and Beam Profile can be represented by functions of depths and distances by using one dimensional model model based on transport theory. The parameters on scattering and absorption are evaluated by using non-linear regression process method. The values neeessary for calculation are obtained by simple experiment. The calculated values are in good agreement with the measured values.

  • PDF