• Title/Summary/Keyword: petrology

Search Result 222, Processing Time 0.026 seconds

Petrology of host granites and enclaves from the Bohyeonsan area, Euiseong Basin (의성분지 보현산 일대 화강암류와 포획암에 대한 암석학적 연구)

  • 좌용주;김건기
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.3
    • /
    • pp.187-203
    • /
    • 2000
  • Mafic microgranular enclaves (MME) occur in the granites from the Bohyunsan area. The host granites are generally of granodioritic and granitic compositions. The MME can be divided into magic mineral clusters, quartz diorite and diorite according to their occurrence. Halter variation diagrams show linear trends between the MME and the host granites. Though the rim compositions of plagioclase in the host granites and the MME are similar the core compositions of plagioclase in some host granites show abnormally high An content. The Mg/(Mg+Fe) ratio of hornblende in the host granites gradually increase from the core to the rim. The chemical composition of minerals in the host granites had been affected by more marc magma composition. The modelling of major elements of the MME and hybrid host granites also indicate that they result from simple mingling/mixing between a dioritic magma and the host granite magma. The MME are thus interpreted to be globules of a more mafic magma which intruded the granite magma. Partial equilibration has been achieved between the MME and the host granites after they were commingled with each other.

  • PDF

Petrology of the Cretaceous Volcanic Rocks in the Hampyeong Area (함평지역 백악기 화산암류에 대한 암석학적 연구)

  • Cho, Dong-Hyun;Yun, Sung-Hyo;Koh, Jeong-Seon
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-114
    • /
    • 2009
  • Lithological and petrochemical characteristics and tectonic setting of the Cretaceous volcanic rocks in Hampyeong area located in the southwestern part of Okchon Zone, were studied by field survey and petrochemistry of major, trace, and rare earth elements. The $SiO_2$contents of the volcanic rocks range from 50.8 to 77.2wt.%. With increasing $SiO_2$, $Al_2O_3$, $Fe_2O_3\;^T$, $TiO_2$, MnO, CaO and MgO contents decrease and $K_2O$content increase, but $Na_2O$content is scatter to the trend. According to TAS and AFM diagrams, the Cretaceous volcanic rocks are calc-alkaline series. On the discrimination diagram of $K_2O$versus $SiO_2$, the volcanic rocks belong to high-K rocks series. The trace element compositions and REE patterns of the volcanic rocks, characterized by a high LILE/HFSE ratio and enrichments in LREE, indicate that they are typical of continental margin arc calc-alkaline volcanic rocks associated with the subduction environment. The ratios of Ba/Ta and Ba/La indicate that they are associated with volcanic arc-related magmatism. The Cretaceous volcanic rocks in Hampyeong area might be located in the Eurasian continental margin, related to the Pacific type tectonic environment during the Cretaceous times.

Petrology and Geochemistry of the Cretaceous Palgongsan Granite, Southern Korea (백악기(白堊紀) 팔공산(八公山) 화강암(花崗岩)의 암석학적(岩石學的) 및 지구화학적(地球化學的) 연구(硏究))

  • Hong, Young Kook
    • Economic and Environmental Geology
    • /
    • v.16 no.2
    • /
    • pp.83-109
    • /
    • 1983
  • The Cretaceous Palgongsan granite is a typical, calc-alkaline, subsolvus monzogranite and shows characteristics of "I-type" granite by mineralogy and chemical composition. Many of the major and trace element characteristics of the Palgongsan granite are consistent with a relationship by fractional crystallisation to form a chemically zoned pattern. The granite show light REE enrichment with (Ce/Yb)N ratios of 5.78-9.50. All the REE patterns show Eu negative anomalies which become larger from the margin ($Eu/Eu^*=0.75$) to the core ($Eu/Eu^*=0.24$) of the pluton, mainly due to feldspar fractionation. Mineral geochemistry (alkali-feldspar, plagioclase & biotite) studies also show the zonal structure of the Palgongsan granite. The two-feldspar geothermometer shows that the temperature difference between the margin and the core part of the pluton is about $200^{\circ}C$ at various assumed pressures.

  • PDF

Petrology on the Late Miocene Basalts in Goseong-gun, Gangwon Province (강원도 고성군 일대의 후기 마이오세 현무암의 암석학적 연구)

  • Koh Jeong Seon;Yun Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.78-92
    • /
    • 2005
  • Petrographical and petrochemical analyses for late Miocene basalts in Goseong-gun area. Gangwon province, were carried out to interpret the characteristics and the origin of magma. The basaltic rocks occurred as plug-dome in the summit of several small mountain and developed columnar jointing with pyroxene-megacryst bearing porphyritic texture. And the basalt contains xenoliths of biotite granite (basement rocks), gabbro (lower crustal origin) and Iherzolite(upper mantle origin). The basalts belong to the alkaline basalt field in TAS diagram and partly belong to picrobasalt and trachybasalt field. On the tectonomagmatic discrimination diagram f3r basalt in the Goseong-gun area. they fall into the fields for the within plate and oceanic island basalt. The characteristics of trace elements and REEs shows that primary magma for the basalt magma would have been derived from partial melting of garnet-peridotite mantle. This late Miocene basalt volcanism is related to the hot spot within the palte.

Petrology of Charnockite in Sancheong Area (산청지역에 분포하는 챠노카이트의 암석학적 연구)

  • Lee, Sang-Won;Ock, Soo-Seck;Lee, Young-Taek
    • Journal of the Korean earth science society
    • /
    • v.25 no.4
    • /
    • pp.251-264
    • /
    • 2004
  • The Charnockite in Sancheong region is quarzofeldspathic rock containing orthopyroxene and garnet with a color dark than common granitic rocks. The Chamockite are mostly massive and medium to coarse-grained with K-feldspar phenocryst, but reveal weak foliation. The rock consist mainly of quartz, K-feldspar, plagioclase and orhopyroxene, with biotite, garnet, and anthophyllite. In petrochemistry, the Chamockite has 61-65% $SiO_2$ contents, varying gradually into the margin contacted with orthogneiss, which have compositions of felsic igneous rocks. Major element show almost systematical variation with those of the marginal orthogneisses, except the hornblende gneiss and anorthosite. The Charnockite and orthogneisses show the tholeiitic differentiational trend. Trace and rare earth element abundance patterns in the Charnockite show remarkable negative Sr and Eu anomalies similar to orthogneisses, but different from the hornblende gneiss and anorthosite. Eu contents of the Charnockite are richer than that of orthogneisses. The metamorphic condition of the Charnockite were tested by an orthopyroxene-garnet geotherrnorneter and a plagioclase-garnet geobarometer. Estimated P-T conditions are about $761^{\circ}C$ and 7 kbar at peak metamorphism, but $653^{\circ}C$ and 6.4 kbar at retrograde metamorphism. This suggests that the Charnockite have from an early stage of high-grade metamorphism to represent the granulite facies and then to a late stage medium-grade metamorphism belonging to the amphibolite facies.

A Study on Anisotropic Compression Behavior of Illite (일라이트의 비등방적 압축특성 연구)

  • Yun, Seohee;Lee, Yongjae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.11-18
    • /
    • 2020
  • High-pressure synchrotron X-ray powder diffraction experiments were performed on natural illite (K0.65Al2(Al0.65Si3.35)O10(OH)2) using diamond anvil cell (DAC) under two different pressure transmitting media (PTM), i.e., water and ME41 (methanol:ethanol = 4:1 by volume). When using water as PTM, occasional heating was applied up to about 250℃ while reaching pressure up to 2.7 GPa in order to promote both hydrostatic conditions and intercalation of water molecules into the layer. When using ME41, pressure was reached up to 6.9 GPa at room temperature. Under these conditions, illite did not show any expansion of interlayer distance or phase transitions. Pressure-volume data were used to derive bulk moduli (K0) of 45(3) GPa under water and 51(3) GPa under ME41 PTM. indicating no difference in compressibility within the analytical error. Linear compressibilities were then calculated to be βa = 0.0025, βb = 0.0029, βc = 0.0144 under ME41 PTM showing the c-axis is ca. six times more compressible than a- and b-axes. These elastic behaviors of illite were compared to muscovite, one of its structural analogues.

A Molecular Dynamics Simulation Study of Ranciéite-takanelite Solid Solution Crystal Structures (란시아이트-다카네라이트 고용체 결정구조에 대한 분자동역학 시뮬레이션 연구)

  • Han, Suyeon;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.19-28
    • /
    • 2020
  • Ranciéte is a hexagonal phyllomanganate mineral containing random Mn(IV) vacancies with hydrated Ca2+ cations charged balanced as interlayer cations. Its Mn2+ analogue is called takanelite, and ranciéite and takanelite are regarded as end-members of a solid solution series of (Ca2+,Mn2+)Mn4O9·nH2O. Because the minerals are found as very small particles associated with other minerals, the crystal structures of the solid solution series have yet to be defined. In this research, we conducted classical molecular dynamics (MD) simulations of ranciéite and takanelite by varying the Mn2+/Ca2+ interlayer cation ratio to find relations between the interlayer cations and mineral structures. MD simulation results of chalcophanite group minerals are compared with experimental results to verify our method applied. Then, lattice parameters of ranciéite and takanelite models are presented along with detailed interlayer structures as to the distribution and coordination of cations and water molecules. This study shows the potentials of MD simulations in entangling complicated phyllomanganates structures.

Effects of Temperature on The Crystallization and Structural Stability of Struvite (MgNH4PO4·6H2O) (스트루바이트(MgNH4PO4·6H2O)의 결정화 및 구조 안정성에 미치는 온도 효과)

  • Lee, Seon Yong;Chang, Bongsu;Kng, Sue A;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.29-39
    • /
    • 2020
  • A series of struvite (MgNH4PO4·6H2O) was synthesized and dried at various temperatures (15-60℃). Crystallization of struvite and its structural properties were significantly influenced by synthetic and drying temperature. Struvite was favorably formed at synthetic temperatures ≤30℃ with an inverse relationship between the crystallinity and synthetic temperature. The crystallinity of struvite was also significantly reduced by an increase in drying temperature from 45℃ to 60℃ due to the loss of structural water molecules and ammonium ions by the facilitated thermal decomposition. However, struvite formed at lower synthetic temperature showed higher crystallinity, and its amorphization by thermal decomposition was inhibited. These results demonstrate that struvite formed at low temperature with an stable condition thermodynamically through favorable crystallization shows high crystallinity and stability with respect to the structural and thermal resistance.

Petrology of the Cretaceous Volcanic Rocks in Eastern Part of the Kyeongsan Caldera (경산칼데라 동부지역에 분포하는 백악기 화산암류의 암석학적 특징)

  • Park Sung-Ok;Jang Yun-Deuk;Hwang Sang-Koo;Kim Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.90-105
    • /
    • 2006
  • The Cretaceous volcanic rocks in the study area represented by andesitic rocks occupy eastern part of the Kyeongsan Caldera. The volcanic rocks comprise andesite I, andesitic tuff, andesite II, and andesitic tuff breccia in their stratigraphic succession, and andesitic porphyry. Andesite I is distinguished from andesite II in their color, texture, phenocryst mineralogy and petrochemisty. In outcrops, andesite I is compact and dark-green, and andesite II is brick red in color and porphyritic in texture. In their phenocryst mineralogy, andesite I contains olivine phenocryst in addition to plagioclase and pyroxene which occur in both of andesites. Compared to andesite II, andesite I is higher in $SiO_2$ and $K_2O$ contents and lower in CaO, MgO, MnO, $TiO_2,\;Fe_2O_3$, and $P_2O_5$. Major elements petrochemistry shows that magma series of the volcanic rocks spread widely from calc-alkaline to alkaline series. On the other hand, immobile trace elements petrochemistry shows that the magma series is calc-alkaline without exception, suggesting that the volcanics has experienced more or less alkali enrichment after their eruption. Trace element diagrams for discrimination of tectonic setting show that the volcanics of the study area might be originated from calc-alkaline continental volcanic arc.

Petrology of Puu Oo lavas from the Big Island, Hawaii (하와이, 빅 아일랜드의 푸우오오 용암에 대한 암석학적 연구)

  • Kwon, Suk-Bom;Jang, Yun-Deuk;Park, Byeong-Jun;Kim, Yeong-Kyoo;Kim, Jung-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.217-232
    • /
    • 2007
  • The Puu Oo eruption in Hawaii since 1983 is one of the largest eruptions on Hawaii's volcanic history with prominent compositional variation ($5.6{\sim}10.1wt.%$ in MgO content). Although intense researches of Hawaiian eruption have been conducted for recent years, there is no up-to-date study on Puu Oo lavas that is erupting hot lavas today. in oder to obtain basic information on the geological characteristics of the eruption including any noticeable change in its petrological trend and magma dynamics, we applied several geological approaches such as field survey, systematic sampling, petrography, mineralogy, and geochemistry. Clinopyroxene and Plagioclase phenocrysts are rarely observed on the thin section, however Olivine crysts are much more obvious in the study area. It indicates that Puu Oo is early stage of magma differentiation. Variation diagram of whole rock composition shows that the elements such as $TiO_2,\;Al_2O_3,\;SiO_2$ and $Na_2O$ decrease with increasing MgO. In the trace element Sr, Y Zr and V versus $K_2O$, P18, P19 samples are plotted in primitive area. Variations of the Ni contents during $2003{\sim}2006$ may suggest a sudden change in magma composition probably caused by new magma injection.