DOI QR코드

DOI QR Code

A Molecular Dynamics Simulation Study of Ranciéite-takanelite Solid Solution Crystal Structures

란시아이트-다카네라이트 고용체 결정구조에 대한 분자동역학 시뮬레이션 연구

  • Han, Suyeon (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 한수연 (강원대학교자연과학대학지질학과) ;
  • 권기덕 (강원대학교자연과학대학지질학과)
  • Received : 2020.03.02
  • Accepted : 2020.03.25
  • Published : 2020.03.31

Abstract

Ranciéte is a hexagonal phyllomanganate mineral containing random Mn(IV) vacancies with hydrated Ca2+ cations charged balanced as interlayer cations. Its Mn2+ analogue is called takanelite, and ranciéite and takanelite are regarded as end-members of a solid solution series of (Ca2+,Mn2+)Mn4O9·nH2O. Because the minerals are found as very small particles associated with other minerals, the crystal structures of the solid solution series have yet to be defined. In this research, we conducted classical molecular dynamics (MD) simulations of ranciéite and takanelite by varying the Mn2+/Ca2+ interlayer cation ratio to find relations between the interlayer cations and mineral structures. MD simulation results of chalcophanite group minerals are compared with experimental results to verify our method applied. Then, lattice parameters of ranciéite and takanelite models are presented along with detailed interlayer structures as to the distribution and coordination of cations and water molecules. This study shows the potentials of MD simulations in entangling complicated phyllomanganates structures.

란시아이트(ranciéite)는 수화된 Ca2+ 양이온이 망간 원자 빈자리를 아래위로 덮고 층간을 채우고 있는 육방정계 층상형 산화망간광물(phyllomanganates)이다. 망간 원자 빈자리를 Mn2+ 양이온이 더 우세하게 채우는 경우, 다카네라이트(takanelite)라는 광물로 구분하며, 란시아이트와 다카네라이트는 서로 고용체를 이룬다. 이 광물들은 입자크기가 매우 작고 다른 광물과 함께 산출되기 때문에 실험만으로 정확한 결정구조를 규명하기 어렵다. 이번 연구에서는 층간 Mn2+/Ca2+ 양이온 비율에 따른 란시아이트-다카네라이트의 결정구조와 층간 구조를 규명하기 위해 고전분자동역학 시뮬레이션(molecular dynamics simulations; MD)을 수행하였다. 연구방법의 적합성을 판단하기 위해 결정구조가 잘 알려진 칼코파나이트 군(chalcophanite group) 광물들에 대해 시뮬레이션 계산을 수행 후 실험 결과와 비교하였다. 이후 층간 양이온 비율에 따른 란시아이트 및 다카네라이트 모델에 대한 MD 시뮬레이션을 수행하여 양이온 함량에 따른 양이온과 물 분자의 분포 및 (001)면간거리를 제시한다.

Keywords

References

  1. Babu, C.S. and Lim, C., 2006, Empirical force fields for Biologically active divalent metal cations in water. Journal of Physical Chemistry A, 110, 691-699. https://doi.org/10.1021/jp054177x
  2. Bardossy, G. and Brindley, G.W., 1978, Rancieite associated with a karstic bauxite deposit. American Mineralogist, 63, 762-767.
  3. Barrese, E., Giampaolo, C., Grubessi, O. and Mottana, A., 1986, Rancieite from Mazzano Romana (Latium, Italy). Mineralogical Magazine, 50, 111-18. https://doi.org/10.1180/minmag.1986.050.355.14
  4. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., 1987, The missing term in effective pair potentials. Journal of Physical Chemistry, 91, 6269-6271. https://doi.org/10.1021/j100308a038
  5. Choi, H.S. and Kim, S.J., 1992, Chemistry and dehydration behavior of (Ca, Mg)-buserite from the Janggun Mine, Korea. The Journal of Mineralogical Society of Korea, 5, 102-108.
  6. Chukhrov, F.V., Gorshkov A.I., Sivtsove A.V., Berezovskaya V.V. and Rudnitskaya E.S., 1979, The nature of rancieite. Izvestia Akademia Nauk SSSR, Seriya Geologicheskaya, 11, 71-81.
  7. Cotterell, T.F. and Jenkins, D.A., 2008, Rancieite from Mynydd Parys, Amlwch, Anglesey, Wales. Journal of the Russell Society, 11, 59-63.
  8. Cygan, R.T., 2001, Molecular Modeling in Mineralogy and Geochemistry. Reviews in Mineralogy and Geochemistry, 42, 1-36. https://doi.org/10.2138/rmg.2001.42.1
  9. Cygan, R.T., Liang, J.J. and Kalinichev, A.G., 2004, Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. Journal of Physical Chemistry B, 108, 1255-1266. https://doi.org/10.1021/jp0363287
  10. Denton, A.R. and Ashcroft, N.W., 1991, Vegard's law. Physical Review A, 43, 3161-3164. https://doi.org/10.1103/PhysRevA.43.3161
  11. Drits, V.A., Lanson, B. and Gaillot, A.C., 2007, Birnessite polytype systematics and identification by powder X-ray diffraction. American Mineralogist, 92, 771-788. https://doi.org/10.2138/am.2007.2207
  12. Duff, M.C., Hunter, D.B., Triay, I.R., Bertsch, P.M., Reed, D.T., Sutton, S.R., Shea-McCarthy, G., Kitten, J., Eng, P., Chipera, S.J. and Vaniman, D.T., 1999, Mineral associations and average oxidation states of sorbed Pu on tuff. Environmental Science & Technology, 33, 2163-2169. https://doi.org/10.1021/es9810686
  13. Ertl, A., Pertlik, F., Prem, M., Post, J.E., Kim, S.J., Brandstätter, F. and Schuster, R., 2005, Rancieite crystals from Friesach, Carinthia, Austria. European Journal of Mineralogy, 17, 163-172. https://doi.org/10.1127/0935-1221/2005/0017-0163
  14. Ewald, P.P., 1921, The computation of optical and electrostatic lattice potentials. Annalen der Physik, 64, 253-287. https://doi.org/10.1002/andp.19213690304
  15. Fleischer, M. and Richmond, W.E., 1943, The manganese oxide minerals: A preliminary report. Economic Geology, 38, 269-286. https://doi.org/10.2113/gsecongeo.38.4.269
  16. Frenkel D. and Smit B., 2002, Understanding molecular simulation from algorithms to applications (2nd Ed.). Academic Press, San Diego, 664p.
  17. Frondel, C., Marvin, U.B. and Ito, J., 1960, New data on birnessite and hollandite. American Mineralogist, 45, 871-875.
  18. Grice, J.D., Gartrell, B., Gault, R.A. and Velthuizen, J.V., 1994, Ernienickelite, $NiMn_3O_7{\cdot}3H_2O$, A new mineral species from the Siberia complex, Western Australia: Comments on the crystallography of the chalcophanite group. The Canadian Mineralogist, 32, 333-337.
  19. Gonzalez, M.A., 2011, Force fields and molecular dynamics simulations. Collection SFN, 12, 169-200. https://doi.org/10.1051/sfn/201112009
  20. Guiyin, Y., Shanghua, Z., Mingkai, Z., Jianping, D. and Deyu, L., 1992, Jianshuiite-A new magnesic mineral of chalcophanite group. Acta Mineralogica Sinica, 12, 69-77 (in Chinese with English abstract).
  21. Humphrey, W., Dalke, A. and Schulten, K., 1996, VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  22. Jones, J.E., 1924, On the determination of molecular fields. II. From the equation of state of a gas. Proceedings of the Royal Society of London Series A, 106, 463-477.
  23. Kim, J.H., Lee, J.Y. and Kwon, K.D., 2019, A classical molecular dynamics study of the $Mg^{2+}$ coordination in todorokite. Journal of the Mineralogical Society of Korea, 32, 151-162. https://doi.org/10.9727/jmsk.2019.32.3.151
  24. Kim, S.J., 1990, Crystal chemistry of hexagonal 7A phyllomanganate minerals. Journal of Mineralogical Society of Korea, 3, 34-43.
  25. Kim, S.J., 1991, New characterization of takanelite. American Mineralogist, 76, 1426-1430.
  26. Kim, S.J., 1993, Chemical and structural variations in rancieite-takanelite solid solution series. Neues Jahrbuch für Mineralogie Monatshefte, 5, 233-240.
  27. Kwon, K.D., Refson, K. and Sposito, G., 2009, Zinc surface complexes on birnessite: A density functional theory study. Geochimica et Cosmochimica Acta, 73, 1273-1284. https://doi.org/10.1016/j.gca.2008.11.033
  28. Marcus, Y., 1994, A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophysical Chemistry, 51, 111-127. https://doi.org/10.1016/0301-4622(94)00051-4
  29. Manceau, A., Gorshkov, A.I. and Drits, V.A., 1992, Structural chemistry of Mn, Fe, Co and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77, 1144-1157.
  30. Nambu, M. and Tanida, K., 1971, New mineral takanelite. Journal of Japan Association of Mineralogy, Petrology, and Economic Geology, 65, 1-15.
  31. Newton, A.G. and Kwon, K.D., 2018, Molecular simulations of hydrated phyllomanganates. Geochimica et Cosmochimica Acta, 235, 208-223. https://doi.org/10.1016/j.gca.2018.05.021
  32. Nose, S., 1991, Constant temperature molecular dynamics methods. Progress of Theoretical Physics Supplement, 103, 1-46. https://doi.org/10.1143/PTPS.103.1
  33. Plimpton, S.J., 1995, Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  34. Post, J.E., 1999, Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the national Academy of Sciences, 96, 3447-3454. https://doi.org/10.1073/pnas.96.7.3447
  35. Post, J.E. and Appleman, D.E., 1988, Chalcophanite, $ZnMn_3O_7{\cdot}3H_2O$: New crystal-structure determinations. American Mineralogist, 73, 1401-1404.
  36. Post, J.E. and Heaney, P.J., 2014, Time-resolved synchrotron X-ray diffraction study of the dehydration behavior of chalcophanite. American Mineralogist, 99, 1956-1961. https://doi.org/10.2138/am-2014-4760
  37. Post, J.E., Heaney, P.J. and Ertl, A., 2008, Rietveld refinement of the rancieite structure using synchrotron powder diffraction data. Powder Diffraction, 23, 10-14. https://doi.org/10.1154/1.2836477
  38. Post, J.E., Thomas, E. and Heaney, P.J., 2016, Jianshuiite in oceanic manganese nodules at the Paleocene-Eocene boundary. American Mineralogist, 101, 407-414. https://doi.org/10.2138/am-2016-5347
  39. Potter, R.M. and Rossman, G.R., 1979, A magnesium analogue of chalcophanite in manganese-rich concretions from Baja California. American Mineralogist, 64, 1227-1229.
  40. Richmond, W.E., Fleischer, M. and Mrose, M.E., 1969, Studies on manganese oxide minerals. IX. Rancieite. Bulletin of the French Society for Mineralogy and Crystallography, 92, 191-195.
  41. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C., 1977, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-Alkanes. Journal of computational Physics, 23, 327-341. https://doi.org/10.1016/0021-9991(77)90098-5
  42. Verlet, L., 1967, Computer "Experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159, 98-103. https://doi.org/10.1103/PhysRev.159.98
  43. Waldher, B., Kuta, J., Chen, S., Henson, N. and Clark, A.E., 2010, ForceFit: A code to fit classical force fields to quantum mechanical potential energy surfaces. Journal of computational Chemistry, 31, 2307-2316. https://doi.org/10.1002/jcc.21523