• Title/Summary/Keyword: petroleum degrading microorganism

Search Result 6, Processing Time 0.025 seconds

Evaluation of Petroleum Oil Degrading Mixed Microorganism Agent for the Bioremediation of Petroleum Oil Spilled in Marine Environments (해양유류오염정화를 위한 유류분해 미생물제제의 평가)

  • Sohn, Jae-Hak
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1599-1606
    • /
    • 2011
  • To evaluate the effects of microorganism agents on oil biodegradation, treatability and microcosm studies were conducted. Petroleum oil degrading bacteria were isolated from enriched cultures of oil-contaminated sediment samples using a mineral salts medium (MSM) containing 0.5% Arabian heavy crude oil as the sole carbon source. After a 5 day-incubation period using MSM, mixed microorganisms of three species (strains BS1, BS2 and BS4) degraded 48.4% of aliphatic hydrocarbons and 30.5% of aromatic hydrocarbons. Treatability and microcosm tests were performed in the three different treatment conditions (AO: Arabian heavy crude oil, AO+IN: Arabian heavy crude oil+inorganic nutrient, AO+IN+MM: Arabian heavy crude oil+inorganic nutrient+mixed microorganism agents). Among these, significantly enhanced biodegradation of aliphatic hydrocarbons were observed in AO+IN and AO+IN+MM conditions, without showing any different biodegradation rates in either condition. However, the degradation rates of aromatic hydrocarbons in an AO+IN+MM condition were increased by 50% in the treatability test and by 13% in the microcosm test compared to those in an AO+IN condition. Taken together, it can be concluded that mixed microorganism agents enhance the biodegradation of aliphatic and aromatic hydrocarbons in laboratory, a treatability test, and a microcosm test. This agent could especially be a useful tool in the application of bioremediation for removal of aromatic hydrocarbons.

유류분해 미생물의 특성 및 제제화 가능성 평가

  • 윤정기;김태승;노회정;김혁;박종겸;고성환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.297-300
    • /
    • 2004
  • The various microbial tests were performed to determine bioremediation agent capacity for eight strains isolated from the oil contaminated regions. Two tests for isolated strains were conducted such as cell hydrophobicity and emulsifying activity. The biodegradation of SHM (saturated hydrocarbon mixture) and AHM (aromatic hydrocarbon mixture) with the strains also was carried out. The strains having higher cell hydrophobicity and emulsifying activity degraded petroleum oil effectively. The degradation capacity for SHM was represented more than 90% in YS-7 and WLH-1 of isolated strains, and KH3-2 were capable of degrading AHM. Especially, WLH-1 as yeast was shown more than two or three times in the degradation capacity of automobile engine lubricants and the biomonitoring results of contaminated soil for residual oil degrading test showed that the hydrocarbon biodegradation was increased in the second treatment by this strain.

  • PDF

Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site

  • Kang, Yoon-Suk;Park, Youn-Jong;Jung, Jae-Joon;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1672-1678
    • /
    • 2009
  • We studied the effects of aged total petroleum hydrocarbons (aged TPH) on the survival of allochthonous diesel-degrading Rhodococcus sp. strain YS-7 in both laboratory and field investigations. The aged TPH extracted from a crude-oil-contaminated site were fractionized by thin-layer chromatography/flame ionization detection (TLC/FID). The three fractions identified were saturated aliphatic (SA), aromatic hydrocarbon (AH), and asphaltene-resin (AR). The ratio and composition of the separated fractions in the aged TPH were quite different from the crude-oil fractions. In the aged TPH, the SA and AH fractions were reduced and the AR fraction was dramatically increased compared with crude oil. The SA and AH fractions (2 mg/l each) of the aged TPH inhibited the growth of strain YS-7. Unexpectedly, the AR fraction had no effect on the survival of strain YS-7. However, crude oil (1,000 mg/l) did not inhibit the growth of strain YS-7. When strain YS-7 was inoculated into an aged crude-oil-contaminated field and its presence was monitored by fluorescent in situ hybridization (FISH), we discovered that it had disappeared on 36 days after the inoculation. For the first time, this study has demonstrated that the SA and AH fractions in aged TPH are more toxic to an allochthonous diesel-degrading strain than the AR fraction.

유류분해 미생물을 이용한 세척 유출수 처리에 관한 연구

  • 김형수;최상일;조장환
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.287-290
    • /
    • 2002
  • 계면활성제를 이용한 유류 오염토양 복원기술 적용시 발생되는 세척 유출수를 유류분해 미생물로 알려진 Pseudomonas putida Fl, Pseudomonas oleovorans, Acinetobacter calcoaceticus를 이용하여 생물학적으로 처리하는데 필요한 기초 연구를 실시하였다 세종류의 미생물은 본 연구에 사용된 계면활성제(POE$_{5}$, POE$_{14}$)에 대하여 독성이 없는 것으로 판명되었으며, 배양 종료 후 계면활성제 농도에 따른 TPH 분해율은 0.1%, 0.5%, 1%의 계면활성제 농도에서 유사한 분해율을 나타냈으나, 배양 초기에는 0.1%가 0.5%나 1% 농도에 비하여 높은 분해율을 보였다 pH의 변화에 따른 TPH 분해율은 적용 pH 범위(4, 6.5, 9)내에서 모두 생육이 가능하였으며, 세 종류의 미생물은 pH 6.5에서 가장 높은 TPH 분해 율을 나타내었다.

  • PDF

Biodegradation of Crude Oil and Petroleum Products by Crude Oil-degrading Microorganism (미생물을 이용한 원유 및 원유제품의 분해 특성)

  • 정선용;오경택;박귀환;이정일;이중기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.247-254
    • /
    • 2002
  • Two kinds of crude oil-degrading microorganisms from soil and one kind from sea were isolated and named strain Al32, strain F722 and strain OM1, respectively. These microorganism were identified Acinetobacter sp., Pseudomonas aeruginosa and Acinetobacter calcoaceticus, respectively. The optimum cultivation temperature of Acinetobacter sp. A132 and P. aeruginosa F722 was $35^{\circ}C$ and optimum growth pH was 8 and 9, respectively. The growth was the highest at 2.0% (w/v) substrate concentration when crude oil was only carbon source. The growth of A. calcoaceticus OM1 isolated from sea was the highest at 3.0% (w/v) of crude oil. In inspection of crude oil degradability, strain Al32 showed 5.49 g/L.day with Eleuthera (OMAN), 2.0% (w/v). P. aeruginosa F722 showed 1.19 g/L g/L.day with L-Zakum (AFRICA). In case of kerosene $nC_9\simnC_{20}$ and diesel $nC_9\simnC_{28}$, A. calcoaceticus OM1 was degraded 95% and 75%, respectively, for 7 days culture, and P. aeruginosa F722 was 80% after 10 days.

A Study on Isolation of BTEX Degrading Microorganism and Variation of BTEX Removal Efficiency and Microorganism Growth Rate According to Co-Culture (BTEX 분해미생물의 순수분리와 혼합 배양에 따른 기질 분해율 및 미생물 성장률 변화에 관한 연구)

  • Chung, Kyung-mi;Lee, Sang-hyup;Lee, Han-woong;Hong, Seok-won;Kim, Young-o;Choi, Yong-su;Yu, Myong-jin
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • The isolated microorganisms, Pseudomonas stutzeri, Raoultella planticola (Klebsiella), Serratia fonticola from petroleum contaminated soil were enriched on benzene, toluene, ethylbenzene, o-xylene as carbon and energy sources, respectively. And the degradation characteristics of BTEX was observed in the mixed BTEX substrates. We found that the BTEX in mixed substrates were degraded more than 50% by three isolated microorganisms. Among three isolated microorganisms, the highest degradation rate was observed in Pseudomonas stutzeri, but the degradation rate was different according to microorganisms. In order to increase the degradation efficiency, we applied the co-culture of isolated three microorganisms. The mixture rate of pseudomonas stutzeri : Raoultella planticola (Klebsiella) : Serratia fonticola was follows ; 1:2:1, 1:1:2, and 2:1:1, respectively. In two co-culture of 1:2:1 and 1:1:2, degradation rate was lower than isolated microorganisms. However, degradation rate became higher than isolated microorganisms and the degradation rate of benzene, toluene, and ethylene was more than 95% in co-culture of 2:1:1. The degradation rate increased through the co-culture of isolated microorganisms, however, the growth rate decreased. This was resulted from the substrate competition between microorganisms. The co-culture of microorganisms is a effective method to increase the degradation efficiency of BTEX and the co-culture mixing rate is a important factor for determination of degradation efficiency.