• Title/Summary/Keyword: pet fashion

Search Result 114, Processing Time 0.041 seconds

ESG Management Practice Led by BYN Black Yak: The Resource Circulation System for Recycling Domestic Transparent PET Bottle ((주)BYN블랙야크의 ESG 경영 실천 사례 : 국내 투명 페트병 자원순환 시스템을 중심으로)

  • Kang, Tae Sun;Kim, Youn Sung;Jung, Dexter
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • Purpose: The main purpose of this study is to analyze the case of the transparent PET bottle resource circulation project of BYN Black Yak Co., Ltd., present implications, and propose ways to spread it in the future. Methods: In this study, the logic of the Double Diamond Model is applied to analyze the development process of sustainable fashion made from BYN Black Yak Co., Ltd.'s PET Bottle Resource Circulation System. Results: The K-rPET Resource Circulation Project of BYN Black Yak Co., Ltd. is recognized as a best example for its contribution to eco-friendly activities, solving social problems, raising consumer awareness, and sharing recycling habits. Before the plastic bottle becomes a garment, five steps are taken (discharge of PET bottle → collection of PET bottle → recycling of PET bottle → fabrication of yarn → production of the finished product out of the fabric). BYN Black Yak Co., Ltd. has successfully commercialized it by recycling reverse-recovery PET bottles by making solutions to problems that have not been solved at each stage. Conclusion: In addition to efforts to find and strengthen weak links presented in the Theory of Constrains (TOC), it appears to have systematically carried out activities to convert stakeholder discomforts into a package of gain points. As shown in the slogan "We are all in!" the proposal and implementation for the completion of a true environmental system is judged to have truly performed ESG management well for the company's business. ESG management activities at BYN Black Yak Co., Ltd. are expected to continue.

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.

A Study on the Physical Properties and Subjective Evaluation of the PTT[Poly(trimethylene terephthalate)] Fabric (PTT[Poly(trimethylene terephthalate)] 직물(織物)의 물리적(物理的) 특성(特性)및 주관적(主觀的) 평가(評價)에 관(關)한 연구(硏究))

  • Seo, Hyo-Jeong;Kim, Jong-Jun;Jeon, Dong-Won
    • Journal of Fashion Business
    • /
    • v.7 no.4
    • /
    • pp.121-128
    • /
    • 2003
  • A new textile material, poly(trimethylene terephthalate) polymer, has been introduced to the textile industry. The structure of PTT is similar to the PET, while the tensile deformation and subsequent recovery property is better than that of PET. In this study, the physical and mechanical properties of textile woven fabrics made of PTT, PET, and nylon 6 yarns as the filling yarn were determined using the Kawabata Evaluation System (KES), including tensile, bending, shearing, compression, and surface related parameters. On top of these measurements, the subjective ratings by evaluators were performed on the fabric samples. From the examination of the stress-strain behavior of the yarn specimens focused on the recovery mode, it was evident that the PTT specimen developed lower stress at 3% elongation. The subsequent recovery curve showed that the PTT has less stress-decay rate than the other specimens, implying that the recovery behavior of the PTT is recommendable for the end-uses including stretchable textile materials, sports wears, etc. The KES bending rigidity(B) value of the PTT sample fabric was lower than that of the PET sample fabric. Subjective evaluation of the fabric samples by the evaluators on the descriptive word pair "soft - not soft" showed similar tendency with the KES B determination of the fabric samples.

Characteristics of PET Microfiber Fabrics Decomposed by Sodium glycerolate/Glycerol Solution (Sodium glycerolate/Glycerol 용액에 의한 PET 신합섬직물의 분해특성)

  • Yoon, Jong Ho;Huh, Man Woo;Bae, Jeong Sook;Cho, Yong Suk
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.16-24
    • /
    • 1996
  • Polyester microfiber fabrics were alcoholysed at 120, 140, and 16$0^{\circ}C$ in 0.5, 1.0, and 1.5% of sodiumglycerolate/glycerol solutions(NaGR) up to 80% and the characteristic decomposition features were compared and discussed with the results of the hydrolysis done by 5% sodium hydroxide solution(NaOH) at 80, 90, and 10$0^{\circ}C$. The resulting activation thermodynamic parameters calculated by the combined use of the Arrhenius equation and the Eyring equation were in NaOH case ${\Delta}H^*$=- 13.89 kcal/mol, ${\Delta}S^*$/=-38.12 cal/mol K, and ${\Delta}G^*$=25.25 kcal/mol and in NaGR case ${\Delta}H^*$=29.81 kcal/mol, ${\Delta}S^*$=-2.29 cal/mol K and ${\Delta}G^*$=30.49 kcal/mol. Since in all cases NaGR-PET system has higher activation thermodynamic parameters, it was concluded that NaGR-PET reaction system is more favorable at high temperatures and occurs in a less selective fashion, in comparison to the NaOH-PET reaction system.

  • PDF

Synthesis and Application of Color Depth Black Disperse Dyes for PET Fabric (PET 직물용 심색성 분산염료의 합성과 Black 염색)

  • Kim, Hye-Jin;Kim, Jae-Ho;Kim, Dong-Uk;Hong, Seung-Pyo;Kim, Sang-Jin;Kim, Hee-Dong;Kim, Hyun-Ah;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.290-296
    • /
    • 2014
  • In order to produce black disperse dye which has high heat resistance and depth color for polyester(PET), an orange disperse dye was designed and synthesized with pyridine based derivatives to get high heat resistance. Disperse blue dye adopts heterocycles structure for high molar extinction coefficient and long wavelength absorption. Synthesized disperse dye is micronized to an particle size of $0.7{\mu}m$. The mixing condition for black color using commercial disperse violet 93 is blue dye 30%, red dye 21%, and orange dye 21%, respectively. Dyed PET fabric with synthesized dye has quiet good color fastness to sublimation(grade 3-4) and has excellent rubbing, washing and light fastness grade 4-5.

A Study on the Alkali Hydrolysis of Sea-island PET Ultra-microfiber (해도형(海島型) PET 초극세섬유의 알칼리 가수분해에 관한 연구)

  • Seo, Mal Yong;Lee, Jun Hee;Ok, Chi Min;Cho, Seong Hun;Lee, Jong Woo;Cho, Ho Hyun
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.303-313
    • /
    • 2013
  • Alkali hydrolysis of sea-island PET 0.02denier microfiber were compared to those on the fabrics of the 0.06denier microfiber. In the dissolution of the sea component out of sea island type ultra-microfiber, it is important to determine the optimum division and divided material. Weight reduction of sea island ultra-micro sea island fiber was faster than regular PET about 10 times. Also 0.2denier sea-island ultra-micro sea island fiber has better color fastness (washing, friction, and daylight) than 0.06denier level sea-island ultra-microfiber. In this study, 0.2denier ultra-micro sea island fiber shows the possibility of high value product.

Far-infrared Emission Characteristics of ZrC Imbedded Heat Storage Knitted Fabrics for Emotional Garment (탄화지르코늄 함유 감성의류용 축열/발열 편물의 원적외선 방출특성)

  • Kim, Hyun-Ah
    • Science of Emotion and Sensibility
    • /
    • v.18 no.1
    • /
    • pp.49-58
    • /
    • 2015
  • This paper investigated far-infrared emission characteristics of ZrC imbedded heat storage knitted fabrics for emotional garment. For this purpose, ZrC imbedded heat storage PET was spun with high viscosity PET imbedded ZrC powder on the core part and low viscosity PET on the sheath part by conjugated spinning method. Ingredient analysis and far-infrared emission characteristics assessment of spun filament were carried out by EDS and FT-IR spectrometer. Two kinds of knitted fabrics were made using texturized ZrC imbedded PET for measuring thermal characteristics of ZrC imbedded heat storage PET. Zr peak was certified by EDS measurement and it was confirmed that content of Zr was 19.29%. Far-infrared analysis revealed that emission power at the range of wavelength, $5{\sim}20{\mu}m$ was $3.65{\times}10^2W/m^2$, and emissivity was 0.906. Heat storage analysis by KES-F7 system revealed that $Q_{max}$ of ZrC imbedded PET knitted fabric was lower than that of regular PET one and warmth keepability rate was higher than that of regular one, which means that ZrC imbedded PET knitted fabric has heat storage property. Thermal conductivity of ZrC imbedded PET knitted fabric was higher than that of regular PET one which was caused by high thermal conductivity of Zr itself. Hand property of ZrC imbedded knitted fabric was not inferior compared to regular PET knitted fabric, which preferably was found to be dependent on knit structure and surface property.

Treatment and Characterization of Polyethylene Terephthalate Fibers with Silicone Rubber Adhesive for Heat-Resistant Adhesion (실리콘 고무와 내열접착 향상을 위한 Polyethylene Terephthalate 섬유 접착층의 제조 및 특성)

  • Kim, Jihyo;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.107-117
    • /
    • 2019
  • In case of pure rubber materials, the initial quality of the rubber materials would be excellent, however, the durability against external impact might be poor. In order to overcome the relatively low durability, textile cord could be employed with silicone rubber. We have studied the improvement of heat-resistant adhesion properties of silicone adhesives between silicone rubber and PET fibers by applying various conditions including dip solution recipe. The silicone rubber used was a platinum catalyst curing type and platinum catalyst type silicone adhesive was used as an adhesive to obtain an optimum adhesive force. Furthermore, the bonding mechanism between silicone and PET fiber was established.

Mechanical Properties and Garment Formability of PET/Spandex Stretch Fabrics (PET/스판덱스 스트레치 직물의 역학특성과 의류형성성능)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1098-1108
    • /
    • 2017
  • This paper investigated stretchability with fabric mechanical properties of one-way and two-way stretch fabrics. For this purpose, 1-way and 2-way woven fabrics were prepared using 150d PET/spandex covered yarns with different thermal treatment according to 4 kinds of wet thermal machines subsequently, fabric mechanical properties were measured and compared with regular PET fabrics. In addition, the garment formability of stretch fabrics was predicted and compared to regular fabrics according to wet thermal treatment. The weft stretchability of 2-way stretch fabric was about 10% higher than the 1-way stretch fabric. The compressibility of the stretch fabrics was 1.5 times higher than regular fabrics. The compressibility of stretch fabrics treated with CPB and rope type wet thermal machine showed higher values than other types of wet thermal machines. The bending rigidity of 2-way stretch fabric was lower than 1-way stretch fabric. Shear rigidity of 2-way stretch fabric was higher than 1-way and regular fabrics. Garment formability of 2-way stretch fabric was higher than regular and one-way stretch fabrics. Garment formability of 2-way stretch fabrics treated with wet thermal conditions under low tension showed the highest values.