• Title/Summary/Keyword: pesticide residue limit

Search Result 177, Processing Time 0.032 seconds

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.

Effects of Glufosinate-Ammonium to Earthworms, Soil Microorganisms and Crops (제초제 glufosinate-ammonium의 지렁이 및 토양 미생물과 작물에 미치는 영향)

  • Kim, Yong-Seog;Jeon, Yong-Bae;Choi, Hae-Jin;Kim, Song-Mun;Kim, Sung-Min
    • The Korean Journal of Pesticide Science
    • /
    • v.10 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • In order to investigate the impacts of non-selective herbicide, glufosinate-ammonium (ammonium 4-[hydroxy(methyl)phosphinoyl] -DL-homoalaninate, GLA) to the non-target organisms, earthworm was exposed to GLA in the field soil for a month, and microbial populations in the soil were investigated after application of GLA. Simultaneously, the residues of GLA and its metabolite, 3-MPP were analyzed in the same soil. Meanwhile, to elucidate the influence of GLA to the growth of non-target crops incase of inter-furrow application, the amounts of carotenoid, chlorophyll, amino acid, proteins and sugars in the leaves of potato and chinese cabbage grown in the same field were investigated. In result, the dead earthworm was not observed during the test period, and the increasing rates of bodyweight were $9.410{\sim}11.603%$ in GLA-treated plots and 5.645% in GLA-untreated plots. The populations of fungi, bacteria and actinomycetes in the GLA-treated soils were $6.2{\times}10^4$, $1.5{\times}10^6$ and $5.7{\times}10^4$, respectively. They maintained relatively similar levels to the control which were $3.7{\times}10^4$, $3.7{\times}10^5$ and $3.7{\times}10^4$, respectively. In residue analysis, the limit of detection of GLA was 0.02 mg $kg^{-1}$, that of 3-MPP was the same level, and the half-life of GLA was 15 days in sandy clay loam soil. This result indicates that GLA was degraded very quickly in field soil. On the other hand, the amounts of physiological, biochemical components such as carotenoid, amino acid, chlorophyll, protein and sugar were ranged from 90.0 to 104.3% in potato and from 99.0 to 112.7% in chinese cabbage. Comparing with hand-weeded plots, it is indicated that GLA had not affected to the growth of non-target crops when applied at inter-furrow in crops-growing field.

Development of Analytical Method for Fenoxycarb, Pyriproxyfen and Methoprene Residues in Agricultural Commodities Using HPLC-UVD/MS (HPLC-UVD/MS를 이용한 농산물 중 fenoxycarb, pyriproxyfen 및 methoprene의 분석법 확립)

  • Lee, Su-Jin;Kim, Young-Hak;Song, Lee-Seul;Hwang, Yong-Sun;Lim, Jung-Dae;Sohn, Eun-Hwa;Im, Moo-Hyeog;Do, Jung-Ah;Oh, Jae-Ho;Kwon, Ki-Sung;Lee, Joong-Keun;Lee, Young-Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.254-268
    • /
    • 2011
  • Fenoxycarb, pyriproxyfen and methoprene are juvenile hormone mimic insecticide. These insecticides have been widely used for mosquito, fly, scale insects, and Lepidoptera. The purpose of this study was to develop a simultaneous determination procedure of fenoxycarb, pyriproxyfen and methoprene residues in crops using HPLC-UVD/MS. These insecticide residues were extracted with acetone from representative samples of four raw products which comprised brown rice, apple, green pepper, and Chinese cabbage. The extract was diluted with saline water, and then n-hexane/dichloromethane partition was followed to recover these insecticides from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The analytes were quantitated by HPLC-UVD/MS, using a $C_{18}$ column. The crops were fortified with each insecticide at 3 levels per crop. Mean recovery ratios were ranged from 80.0 to 104.3% in four representative agricultural commodities. The coefficients of variation were less than 4.8%. Quantitative limit of fenoxycarb, pyriproxyfen, and methoprene was 0.04 mg/kg in crop samples. A HPLC-UVD/MS with selected-ion monitoring was also provided to confirm the suspected residues. The proposed simultaneous analysis method was reproducible and sensitive enough to determine the residues of fenoxycarb, pyriproxyfen and methoprene in the agricultural commodities.

Hazard Analysis for the Cultivation Stage of Strawberry Farms for Securing Preliminary Data to Establish the Good Agricultural Practices (농산물우수관리제도 확립의 기초자료 확보를 위한 딸기농장 재배단계의 위해요소 분석)

  • Lee, Chi-Yeop;Lee, Won-Gyeong;Song, Jeong-Eon;Kim, Kyeong-Yeol;Shim, Won-Bo;Yoon, Yo-Han;Kim, Yun-Shik;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.97-108
    • /
    • 2012
  • Physical, chemical and biological hazards of strawberry farms at the cultivation stage were analyzed to establish the GAP(Good Agricultural Practice) system. Samples were collected from the plants, cultivation environments(water, soil and air), and personal hygiene (hand, glove, and clothes) of three strawberry farms(A, B, and C) and were tested to analyze physical, chemical (heavy metals and pesticide residues), and biological(sanitary indications and foodborne pathogens) hazards. Physical hazards such as insects and pieces of metal and glass were found in the strawberry farms and can be potential bow for strawberry products. Heavy metal and pesticide residue as chemical hazards were detected at levels lower than the regulation limit. In case of biological hazards, total bacteria and coliform were detected at the levels of 1.6~7.3 and 1.3~5.6 log CFU/g, leaf, mL, hand or $100cm^2$. However, Escherichia coli was not detected in all samples. Bacillus cereus and Staphylococuus aureus were detected at levels of ${\leq}$ 1.1~6.1 log CFU and 4.7~5.4 log CFU/g, mL, hand or $100cm^2$, whereas Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. This study demonstrates that various harzards were in strawberry farms at the growing stage. Therefore proper management such as GAP is needed to prevent the occurrence of food poisoning associated with the hazards revealed in this study.

Establishment of Safe Management Guideline Based on Uptake Pattern of Pesticide Residue from Soil by Radish (토양잔류 농약의 무 흡수양상 및 토양 안전관리기준 설정)

  • Hwang, Jeong-In;Kwak, Se-Yeon;Lee, Sang-Hyeob;Kang, Min-Su;Ryu, Jun-Sang;Kang, Ja-Gun;Jung, Hye-Hyeon;Hong, Sung-Hyeon;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.278-285
    • /
    • 2016
  • BACKGROUND: Uptake patterns of ${\alpha}$-, ${\beta}$-isomers and sulfate metabolite of endosulfan (ED) by radishes grown in treated soils with ED concentrations of 2 and 10 mg/kg were investigated to establish soil management guidelines for ensuring the safety of radishes from ED residues. METHODS AND RESULTS: All samples of soils and radish plants separated into shoot and root parts were analyzed for ED residues using a gas-chromatography mass spectrophotometer, and the results were used to calculate the bioconcentration factor (BCF), indicating the ratio of ED concentrations between radishes and soils. During the experimental period, uptake and distribution rates of ED-sulfate in radishes were the highest, followed by ${\alpha}$- and ${\beta}$-ED. The BCF values to initial ED concentrations in soils were greater for root parts (0.0077 to 0.2345) than for shoot parts (0.0002 to 0.0429) and used to obtain regression equations by time. Long-term BCFs estimated by the obtained equations ($R^2$ of 0.86 to 1.00) were evaluated with the maximum residue limit (0.1 mg/kg) of ED for radishes, in order to suggest safe management guidelines of ED for radish-cultivating soils. CONCLUSION: Suggested guidelines showed the significant dependency on duration for radish cultivation and exposed concentration of ED in soil.

An Investigation of the Hazards Associated with Cucumber and Hot Pepper Cultivation Areas to Establish a Good Agricultural Practices (GAP) Model (오이와 고추생산 환경에서의 GAP 모델 개발을 위한 위해요소 조사)

  • Shim, Won-Bo;Lee, Chae-Won;Jeong, Myeong-Jin;Kim, Jeong-Sook;Ryu, Jae-Gee;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • To analyze the hazards associated with cucumber and hot pepper cultivation areas, a total of 72 samples were obtained and tested to detect the presence of biological (sanitary indicative, pathogenic bacteria and fungi) and chemical hazards (heavy metals and pesticide residues). The levels of sanitary indicative bacteria (aerobic plate counts and coliforms) and fungi were ND-7.2 and ND-4.8 log CFU/(g, mL, hand, or $100cm^2$) in cucumber cultivation areas, and ND-6.8 and 0.4-5.3 log CFU/(g, mL, hand, or $100cm^2$) in hot pepper cultivation areas. More specifically, the soil of hot pepper cultivation areas was contaminated with coliforms at a maximum level of 5.6 log CFU/g. Staphylococcus aureus was detected only in glove samples at a level of 1.4 log CFU/$100cm^2$ and Bacillus cereus was detected in the majority of samples at a level of ND-4.8 log CFU/(g, mL, hand, or $100cm^2$). Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella spp. were not detected. Heavy metal (Zn, Cu, Ni, Pb, and Hg) chemical hazards were detected at levels lower than the regulation limit. Residual insecticides were not detected in cucumbers; however, hexaconazole was detected at a level of 0.016 mg/kg (maximum residue limit: 0.3 mg/kg) in hot peppers.

Development of Analytical Method for the Determination and Identification of Unregistered Pesticides in Domestic for Orange and Brown Rice(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide- (식품공전 분석법 미설정 농약의 잔류분석법 확립(I) -Chlorthal-dimethyl, Clomeprop, Diflufenican, Hexachlorobenzene, Picolinafen, Propyzamide-)

  • Chang, Hee-Ra;Kang, Hae-Rim;Kim, Jong-Hwan;Do, Jung-A;Oh, Jae-Ho;Kwon, Ki-Sung;Im, Moo-Hyeog;Kim, Kyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.157-163
    • /
    • 2012
  • BACKGROUND: For the safety of imported agricultural products, the study was conducted to develop the analytical method of unregistered pesticides in domestic. The analytical method of 6 pesticides, chlorthal-dimethyl, clomeprop, diflufenican, hexachlorobenzene, picolinafen, and propyzamide, for a fast multi-residue analysis were established for two different type crops, orange and brown rice by GC-ECD and confirmed by mass spectrometry. METHODS AND RESULTS: The analytical method was evaluated to limit of quantification, linearity and recoveries. The crop samples were extracted with acetonitrile and performed cleanup by liquid-liquid partition and Florisil SPE to remove co-extracted matrix. The extracted samples were analyzed by GC-ECD with good sensitivity and selectivity of the method. The limits of quantification (LOQ) range of the method with S/N ratio of 10 was 0.02~0.05 mg/kg for orange and brown rice. The linearity for targeted pesticides were $R^2$ >0.999 at the levels ranged from 0.05 to 10.0 mg/kg. The average recoveries ranged from 74.4% to 110.3% with the percentage of coefficient variation in the range 0.2~8.8% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in brown rice. And the average recoveries ranged from 77.8% to 118.4% with the percentage of coefficient variation in the range 0.2~6.6% at two different spiking levels (0.02 mg/kg and 0.2 mg/kg, 0.05 mg/kg and 0.5 mg/kg) in orange. Final determination was by gas chromatography/mass spectrometry/selected ion monitoring (GC/MS/SIM) to identify the targeted pesticides. CONCLUSION: As a result, this developed analytical method can be used as an official method for imported agricultural products.