• Title/Summary/Keyword: pesticide metabolite

Search Result 52, Processing Time 0.027 seconds

Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline

  • Lee, Jung-Bok;Sohn, Ho-Yong;Shin, Kee-Sun;Kim, Jong-Sik;Jo, Min-Sub;Jeon, Chun-Pyo;Jang, Jong-Ok;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.343-349
    • /
    • 2008
  • Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

Metabolic Differentiation of Saccharomyces cerevisiae by Ketoconazole Treatment

  • Keum, Young Soo;Kim, Jeong-Han
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.2
    • /
    • pp.109-112
    • /
    • 2013
  • Azole fungicides are one of the most wide-spread antifungal compounds in agriculture and pharmaceutical applications. Their major mode of action is the inhibition of ergosterol biosynthesis, giving depletion of ergosterol, precursors and abnormal steroids. However, metabolic consequences of such inhibition, other than steroidal metabolitesare not well established. Comprehensive metabolic profiles of Saccharomyces cerevisiae has been presented in this study. Wild type yeast was treated either with glucose as control or azole fungicide (ketoconazole). Both polar metabolites and lipids were analyzed with gas chromatography-mass spectrometry. Approximately over 180 metabolites were characterized, among which 18 of them were accumulated or depleted by fungicide treatment. Steroid profile gives the most prominent differences, including the accumulation of lanosterol and the depletion of zymosterol and ergosterol. However, the polar metabolite profile was also highly different in pesticide treatment. The concentration of proline and its precursors, glutamate and ornithine were markedly reduced by ketoconazole. Lysine and glycine level was also decreased while the concentrations of serine and homoserine were increased. The overall metabolic profile indicates that azole fungicide treatment induces the depletion of many polar metabolites, which are important in stress response.

Degradation Pattern and Rate of Some Pesticides in Soils -Part II. Degradation Pttern and Rate of Thiolix in Soils- (토양처리(土壤處理) 농약제(農藥劑)의 분해율(分解率)에 관한 연구(硏究) -제2보(第二報). Thiolix의 토양중(土壤中) 분해(分解)에 대하여-)

  • Lim, Sun-Uk;Choi, Yong-Lak
    • Applied Biological Chemistry
    • /
    • v.26 no.4
    • /
    • pp.248-254
    • /
    • 1983
  • The effects of some soil conditions on the degradation rate and decomposing pattern of thiolix were investigated and the obtained results are summarized as follows: Thiolix degraded more rapidly in flood soils than in noon-flooded, and in wet soils than in dry soils under non-flooded soils. The degradation rates in non-flooded soils increased with higher pesticide concentration. Thiolix was more persistent in non-flooded soils under soil sterelization than under non-sterilization and degraded rapidly in glucose application. The metabolites identified from the soils by TLC and GLC include Thiolix alcohol, Thiolix sulfate, Thiolix ether and a unknown metabolite. Soil enzyme, acid phosphatase activity decreased at higher pesticide concentration, lower moisture contents of soil and the activity in glucose application was increased. Soil enzyme, urease and dehydrogenase activity decreased at higher pesticide concentrations.

  • PDF

Photolysis of the insecticide imidacloprid in water and water-paddy soil systems (살충제 imidacloprid의 물 및 물-토양계 중 광분해)

  • Ihm, Yang-Bin;Kyung, Kee-Sung;Kim, Chan-Sub;Choi, Byeong-Ryeol;Hong, Soo-Myung;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • To elucidate the photolysis characteristics of the insecticide imidacloprid in the environment, $[^{14}C]$imidacloprid was treated into water and paddy soil-water system. In water system, the amount of $^{14}C$-radioactivity distributed in aqueous phase was rapidly increased up to 80% of total $^{14}C$ in water during 7 days of exposure to sunlight. Also, the amounts of imidacloprid in water at day 0 and 3 days after treatment were 1.2461 and 0.8594 mg/kg, respectively, not being detected 7 days after treatment, indicating rapid degradation of imidacloprid in water by sunlight. One photodegradation product, imidacloprid urea, in which the $N-NO_2$ moiety of imidacloprid was replaced by oxygen, was detected from water in water and water-paddy systems. The amount of the metabolite detected from water in water system was 0.0112 mg/kg 1 day after treatment and reached the top concentration of 0.0391 mg/kg 7 days after treatment. In case of water-paddy system, its amount was 0.0117 mg/kg 1 day after treatment and reached the highest concentration of 0.0259 mg/kg 3 days after treatment. Rapid transformation of imidacloprid into polar compounds continued until 7 days after treatment, considering that 80% of $^{14}C$ in water distributed in aqueous phase 7 days after treatment, amount of imidacloprid was 1.6538 mg/kg at day 0 and 0.8785 mg/kg 1 day after treatment, not being detected after 15 days, indicating rapid degradation of imidacloprid in water-paddy soil system by sunlight. The direct degradation of imidacloprid to imidacloprid urea would be a major photodegradation pathway in water and water-paddy soil systems.

Sampling and Analysis of Parathion in the Air and Urinary p-Nitrophenol for Parathion Manufacturing Workers (작업장 공기 중 파라티온과 작업자 소변 중 p-니트로페놀의 시료채취 및 분석)

  • Han, Don-Hee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.17 no.4
    • /
    • pp.300-309
    • /
    • 2007
  • Although parathion is an organophosphate pesticide being legally applied for the purpose of agriculture and is being manufactured, parathion in the air and urinary p-nitrophenol, a metabolite of parathion, were not analysed in Korea. Air of the parathion manufacturing workplace was sampled by OVS-2 tubes using NIOSH 5600 and spot urine of workers was sampled at the end of shift. Parathion and urinary p-nitrophenol were analysed by GC/MS (5973 MSD connected with Agilent 6890 GC) and the protocol was included in this study. It was found that this protocol should be so sensitive that determining parathion in the air and urinary p-nitrophenol below level of ACGIH TLV and BEI be adequate. Another finding was that total sampling volume of air of NIOSH 5600 of 240 L should be adjusted to be less than 120 L due to breakthrough.

Development of an ELISA for the Organophosphorus Insecticide Isofenphos

  • Park, Han-Jin;Park, Won-Chul;Jung, Tae-Owan;Rha, Choon-Sup;Lee, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.599-603
    • /
    • 2002
  • A selective enzyme-linked immunosorbent assay (ELISA) for the insecticide isofenphos was developed. Three different analogues (haptens) of isofenphos were synthesized and were coupled to carrier proteins through the pesticide thiophosphate group t o use as immunogens or coating antigens. Rabbits were immunized with one of the haptens coupled to BSA for production of polyclonal antibodies and the sera were screened against each of the other two haptens coupled to ovalbumin (OVA). Using the sera of highest specificity, an antigen-coated ELISA was developed, which showed an I50 of 96 ng/mL with the detection limit of 2 ng/mL. The antibodies showed negligible cross-reactivity with other organophosphorus pesticides and the phenol metabolite of isofenphos, which makes the developed assay suitable for the selective detection of isofenphos. An antibody-coated ELISA was also developed, which showed an I50 of 580 ng/mL with a detection limit of 70 ng/mL.

Development of Simultaneous Analytical Method for Streptomycin and Dihydrostreptomycin Detection in Agricultural Products Using LC-MS/MS (LC-MS/MS를 이용한 농산물 중 Streptomycin 및 Dihydrostreptomycin 동시시험법 개발)

  • Lee, Han Sol;Do, Jung-Ah;Park, Ji-Su;Park, Shin-Min;Cho, Sung Min;Shin, Hye-Sun;Jang, Dong Eun;Choi, Young-Nae;Jung, Yong-hyun;Lee, Kangbong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.13-21
    • /
    • 2019
  • A method was developed for the simultaneous detection of an antibiotic fungicide, streptomycin, and its metabolite (dihydrostreptomycin) in agricultural products using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted using methanol adjusted to pH 3 using formic acid, and purified with a HLB (Hydrophilic lipophilic balance) cartridge. The matrix-matched calibration curves were constructed using seven concentration levels, from 0.001 to 0.1 mg/kg, and linearity of five agricultural products (hulled rice, potato, soybean, mandarin, green pepper), with coefficients of determination $(R^2){\geq}0.9906$, for streptomycin and dihydrostreptomycin. The mean recoveries at three fortification levels (LOQ, $LOQ{\times}10$, $LOQ{\times}50$, n = 5) were from 72.0~116.5% and from 72.1~116.0%, and relative standard deviations were less than 12.3% and 12.5%, respectively. The limits of quantification (LOQ) were 0.01 mg/kg, which are satisfactory for quantification levels corresponding with the Positive List System. All optimized results satisfied the criteria ranges requested in the Codex guidelines and the Food Safety Evaluation Department guidelines. The present study could serve as a reference for the establishment of maximum residue limits and be used as basic data for detection of streptomycin and dihydrostreptomycin in food.

Determination of Cyhalofop-butyl and its Metabolite in Water and Soil by Liquid Chromatography (LC를 이용한 물과 토양 중 Cyhalofop-butyl과 대사물질의 분석)

  • Hem, Lina;Choi, Jeong-Heui;Liu, Xue;Khay, Sathya;Shim, Jae-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • In this study, a simple, effective, and sensitive method has been developed for the quantitative residue analysis of cyhalofop-butyl and its metabolite cyhalofop acid in water and soil when kept under laboratory conditions. The content of cyholofop-butyl and cyhalofop acid in water and soil was analyzed by first purifying the compounds through liquid-liquid extraction and partitioning followed by Silica gel (adsorption) chromatography. Upon the completion of the purification step the residual levels were monitored through high-performance liquid chromatography (HPLC) using a UV absorbance detector. The recoveries of cyhalofop-butyl from three replicates spiked at two different concentrations ranged from 82.5 to 100.0% and from 66.7 to 97.9% in water and soil, respectively. The limit of detection and minimum detection level of cyhalofop-butyl in water and soil was 0.02 ppm and 10 ng, respectively. The recoveries of cyhalofop acid ranged from 80.7 to 104.8% in water and from 76.9 to 98.1 % in soil. The limit of detection of cyhalofop acid was 0.005 ppm in water and 0.01 ppm in soil, while the minimum detection level was 2 ng both in water and soil. The half-live of cyhalofop-butyl was 4.14 and 6.6 days in water and soil, respectively. The method was successfully applied to evaluate cyhalofop-butyl residues in water and soil applied aj. 30% emulsion, oil in water (EW) product.

Isolation and Characterization of Soil Bacteria Degrading a Fungicide Defenoconazole (살균제 디페노코나졸 분해 세균 분리 및 특성 분석)

  • Ahn, Jae-Hyung;Ro, Yu-Mi;Lee, Gwan-Hyeong;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.349-354
    • /
    • 2016
  • Triazole fungicides occupy an important portion in the global fungicide market and are relatively persistent in soil compared to the other fungicides, suggesting possible adverse effects of the fungicides on human health and environment. In this study, we tried to isolate microorganisms from orchard soils, which can decompose the triazole fungicides, tebuconazole, fluquinconazole, and difenoconazole. Only difenoconazole was completely degraded in the enrichment culture, from which several difenoconazole-degrading bacteria were isolated. They showed the same rep-PCR pattern thus only one strain, C8-2, was further studied. The strain was identified as Sphingomonas sp. C8-2 based on its 16S rRNA gene sequence and decomposed 100 mg/L of difenoconazole in a minimum medium to an unknown metabolite with a molecular weight of 296 within 24 hours. The inhibition effect of the metabolite against representative soil microorganisms significantly decreased compared to that of difenoconazole thus the bacterial strain is expected to be used for the detoxification of difenoconazole in soil and crop.

Determination of Pyribencarb and Its Metabolite KIE-9749 in Agricultural Commodities by High-Performance Liquid Chromatography (액체크로마토그래피를 이용한 농산물중 pyribencarb와 대사물 KIE-9749의 잔류 분석법)

  • Kwon, Hyeyoung;Hong, Su-Myeong;Kim, Taek-Kyum;Kim, Hyung-Jin;Moon, Byeong-Chul;Kyung, Kee-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.3
    • /
    • pp.236-246
    • /
    • 2016
  • The aim of this study was to develop an analytical method for the determination of pyribencarb and its metabolite KIE-9749 in agricultural commodities. The experiment was performed with a range of concentrations $0.05{\sim}2.5{\mu}g/g$ in apple, green pepper, potato, hulled rice, soybean, pear, peach, grape and cucumber. Each samples were extracted with acetone and cleaned by dichloromethane/saline water partition and purified with Florisil solid phase extraction (SPE) cartridge and aminopropyl SPE cartridge. Pyribencarb and KIE-9749 were separated and quantified by HPLC/UVD at 265nm using acetonitrile and water as mobile phase. The recoveries of pyribencarb and KIE-9749 were within 78.3~108.4% and 73.9~113.7% with RSD below 12.2% and 15.0%, respectively. The limits of quantification (LOQ) were both $0.05{\mu}g/g$. LC/ESI-MS/MS was optimized for confirmation of residue identity.