Browse > Article

Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline  

Lee, Jung-Bok (School of Bioresource Sciences, Andong National University)
Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
Kim, Jong-Sik (Department of Biological Science, Andong National University)
Jo, Min-Sub (School of Bioresource Sciences, Andong National University)
Jeon, Chun-Pyo (School of Bioresource Sciences, Andong National University)
Jang, Jong-Ok (School of Bioresource Sciences, Andong National University)
Kim, Jang-Eok (Department of Agricultural Chemistry, Kyungpook National University)
Kwon, Gi-Seok (School of Bioresource Sciences, Andong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 343-349 More about this Journal
Abstract
Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.
Keywords
Vinclozolin; 3,5-dichloroaniline; bioremediation; biodegradation; Rhodococcus sp.; endocrine disruptors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Cain, R. B. and J. A. Mitchell. 1996. Enhanced degradation of the fungicide vinclozolin; isolation and characterization of a responsible organism. Pestic. Sci. 48: 13-23   DOI   ScienceOn
2 Dierickx, P. J. 2004. Cytotoxicity of the dicarboximide fungicides, vinclozolin and iprodione, in rat hepatoma-derived Fa32 cells. Altern. Lab. Anim. 32: 369-373
3 Goodfellow, M., G. Alderson, and J. Chun. 1998. Rhodococcal systematics: Problems and developments. Antonie van Leeuwenhoek 74: 3-20   DOI
4 Gray, Jr. L. E., J. S. Ostby, E. Monosson, and W. R. Kelce. 1999. Environmental antiandrogens: Low doses of the fungicide vinclozolin alter sexual differentiation of the male rat. Toxicol. Ind. Health 15: 48-64   DOI
5 Herlia, P., C. Fimognari, F. Maffiei, F. Vigagni, R. Mesirca, L. Pzzetti, M. Paolini, and C. Forti. 1999. The genetic and nongenetic toxicity of the fungicide vinclozolin. Mutagenesis 11: 445-453   DOI   ScienceOn
6 Igarashi, A., S. Ohtsu, M. Muroi, and K. Tanamoto. 2006. Effects of possible endocrine disrupting chemicals on bacterial component-induced activation of NF-kappaB. Biol. Pharm. Bull. 29: 2120-2122   DOI   ScienceOn
7 Molina-Molina, J. M., A. Hillenweck, I. Jouanin, D. Zalko, J. P. Cravedi, M. F. Fernandez, A. Pillon, J. C. Nicolas, N. Olea, and P. Balaguer. 2006. Steroid receptor profiling of vinclozolin and its primary metabolites. Toxicol. Appl. Pharmacol. 216: 44-54   DOI   ScienceOn
8 Ruger, H. J. and H. J. Krambeck. 1994. Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. Syst. Appl. Microbiol.17: 281-288   DOI   ScienceOn
9 Sasser, M. 1990. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101. MIDI, Newark, DE
10 Sohn, H. Y., H. J. Kim, E. J. Kum, M. S. Cho, J. B. Lee, J. S. Kim, and G. S. Kwon. 2006. Toxicity evaluation of endocrine disrupting chemicals using human HepG2 cell line, Lumbricus rubellus and Saccharomyces cerevisiae. J. Life Sci. 16: 919-924   과학기술학회마을   DOI
11 U. S. Environmental Protection Agency. 1987. Guidance for the registration of pesticide products containing propanil as the active ingredient. U.S. EPA, Washington D.C.
12 Worthing, C. R. and R. J. Hance. 1991. The Pesticide Manual, 9th Ed. The British Crop Protection Council, pp. 172, 501. 703, 859 U.K.
13 Dejonghe, W., J. Goris, A. Dierickx, V. De Dobbeleer, L. Crul, P. De. Vos, W. Verstraete, and E. M. Top. 2002. Diversity of 3- chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol. Ecol. 42: 315-325   DOI   ScienceOn
14 Adolfo, S. S., H. A. Barton, and M. F. Hughes. 2004. Liquid chromatography of the anti-androgen vinclozolin and its metabolites in rat serum. J. Cheromatogr. B 809: 105-110   DOI   ScienceOn
15 Sonia, R., L. Marabini, M. Gervasoni, M. Ferraris, and E. Chiesara. 1998. Adaptation to oxidative stress: Effects of vinclozolin and iprodione on the HepG2 cell line. Toxicology 129: 183-191   DOI
16 Rankin, G. O., V. J. Teets, D. W. Nicoll, and P. I. Brown. 1989. Comparative acute renal effect of three N-(3,5-dichlorophenyl) carboxide fungicides: N-(3,5-Dichlorophenyl) succinimide, vinclozolin and iprodione. Toxicology 56: 263-272   DOI   ScienceOn
17 Golovleva, L. A., Z. I. Finkelstein, A. V. Polyakova, B. P. Baskanov, and M. Y. Nefedova. 1991. Microbial conversion of fungicide vinclozolin. J. Environ. Sci. Health B 26: 293-307   DOI   ScienceOn
18 Mercadier, C. V. D. and J. Bastide. 1998. Chemical and biological transformation of the fungicide. J. Agric. Food Chem. 46: 3817-3822   DOI   ScienceOn
19 Calhelha, R. C., J. V. Andrade, I. C. Ferreira, and L. M. Estevinho. 2006. Toxicity effects of fungicide residues on the wine-producing process. Food Microbiol. 23: 393-398   DOI   ScienceOn
20 Readman, J. W., T. A. Albanis, D. Barcelo, S. Galassi, J. Troczynski, and G. P. Gabrielides. 1997. Fungicide contamination of Mediterranean estuarine waters. Mar. Poll. Bull. 34: 259-261   DOI   ScienceOn
21 Paolini, M., L. Pozzzetti, A. Sapone, A. Camerino, and G. Cantelli-Forti. 1998. Testosterone hydroxylase as multibiomaker of effect in evaluating vinclozolin cocarcinogenesis. Biomarkers 3: 191-203   DOI   ScienceOn
22 Dixon, M. and E. C. Webb. 1964. Enzymes, pp. 950. 2nd Ed. Longmans, London and Colchester
23 Lo, H. H., P. I. Brown, and G. O. Rankin. 1990. Acute nephrotoxicity induced by isomeric dichloroanilines in Fisher 334 rats. Toxicology 63: 215-279   DOI   ScienceOn
24 Widehem, P., S. Ait-Aissa, C. Tixier, M. Sancelme, H. Veschambre, and N. Truffaut 2002. Isolation, characterization and diuron transformation capacities of a bacterial strain Arthobacter sp. N2. Chemosphere 46: 527-534   DOI   ScienceOn
25 Valentovic, M. A., J. G. Ball, D. K. Anestis, and G. O. Rankin. 1995. Comparison of the in vitro toxicity of dichloroaniline structural isomers. Toxic. In Vitro 9: 75-81   DOI   ScienceOn
26 Szeto, S. Y., N. E. Burlinson, J. E. Rahe, and P. C. Oloffs. 1989. Kinetics of hydrolysis of the dicarboximide fungicide vinclozolin. J. Agric. Food Chem. 37: 523-529   DOI
27 Yoon, J. H., S. T. Lee, and Y. H. Park. 1998. Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int. J. Syst. Bacteriol. 48: 187-194   DOI   ScienceOn
28 Valentovic, M. A., B. A. Rogers, M. K. Meadows, J. T. Conner, E. Williams, S. K. Hong, and G. O. Rankin. 1997. Characterization of methemoglobin formation induced by 3,5- dichloroaniline, 4-amino-2,6-dichlorophenol and 3,5-dichlorophenylhydroxylamine. Toxicolgy 188: 23-36
29 Sandermann, H. J., H. W. Heller, N. Hoque, D. E. Pieper, and R. Winkler. 1998. A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium. Appl. Envion. Microbiol. 64: 3305-3312
30 Wu, X. J., W. Q. Lu, P. H. Roos, and V. Mersch-Sundermann. 2005. Vinclozolin, a widely used fungicide, enhanced BaPinduced micronucleus formation in human derived hepatoma cells by increasing CYP1A1 expression. Toxicol. Lett. 159: 83-88   DOI   ScienceOn
31 Christine, N., D. Majken, R. L. Henrik, and M. A. Vinggaard. 2003. The combined effects of vinclozolin and procymidione do not deviate from expected additivity in vitro and in vivo. Toxicol. Sci. 71: 251-262   DOI   ScienceOn
32 Saravanan, B. C., C. Sreekumar, G. C. Bansal, D. Ray, J. R. Rao, and A. K. Mishra. 2003. A rapid MTT colorimetric assay to assess the proliferative index of two Indian strains of Theileria annulata. Vet. Parasitol. 113: 211-216   DOI   ScienceOn
33 Jairaj, V. P., P. F. James, M. H. Thoas, D. B. Richard, and E. C. Carl. 2000. Biotransformation of vinclozolin by fungus Cunninghamella elegans. J. Agric. Food Chem. 48: 6138-6148   DOI   ScienceOn
34 Travkin, V. M., I. P. Solyanikova, I. M. Rietjens, J. Vervoort, W. J. Berkel, and L. A. Golovleva. 2003. Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J. Environ. Sci. Health B 38: 121-132   DOI   ScienceOn
35 Villedieu, C., M. Calman, and J. P. Calman. 1994. Mechanisms of dicarboximide ring opening in aqueous media: Procymidione vinclozolin and chlozolinate. Pestic. Sci. 41: 105-115   DOI   ScienceOn
36 Moorman, W. J., K. L. Cheever, S. R. Skaggs, J. C. Clark, T. W. Turner, K. L. Marlow, and S. M. Schrader. 2000. Male adolescent exposure to endocrine-disrupting pesticides: Vinclozolin exposure in peripubertal rabbits. Andrologia 32: 285-293   DOI   ScienceOn