• Title/Summary/Keyword: perylene

Search Result 62, Processing Time 0.02 seconds

Estimation and Characteristics of Atmospheric Deposition Flux of Polycyclic Aromatic Hydrocarbons (PAHs) into the Masan and Haengam Areas of Korea (마산과 행암 지역으로 유입되는 다환방향족탄화수소(PAHs)의 대기 침적 플럭스 산정과 특성)

  • Lee Su-Jeong;Moon Hyo-Bang;Choi Min-kyu
    • Journal of Environmental Science International
    • /
    • v.15 no.2
    • /
    • pp.121-131
    • /
    • 2006
  • Atmospheric bulk (wet and dry) samples were monthly collected in Masan and Heangam areas of Korea, to assess the deposition flux and seasonal variation of polycyclic aromatic hydrocarbons (PAHs). Deposition fluxes of PAHs in bulk samples were determined using gas chromatography coupled to mass spectrometer detector (GC/MSD). Particle deposition fluxes from Masan and Haengam areas varied from 13 to $87\;g/m^2/year$ and from 5 to $52\;g/m^2/year$, respectively. PAHs deposition fluxes in atmospheric bulk samples in Masan and Haengam areas ranged from 135 to $464\;{\mu}g/m^2/year$ and from 62.2 to $194\;{\mu}g/m^2/year$, respectively. Atmospheric deposition fluxes of particles and PAHs in this study were comparable to or slightly lower values than those from different locations in Korea and other countries. PAHs profiles of atmospheric deposition bulk samples showed slightly different from two sampling areas, however the predominant species of PAHs were similar. Indeno (1,2,3-c,d)pyrene, benzo(g,h,i)perylene, phenanthrene compounds were the most detected PAHs in deposition bulk samples. Carcinogenic PAHs occupied the contribution of approximately $30-40\%$ of the total PAHs deposition fluxes. The non-metric multi-dimensional scaling (MDS) was used, to assess the differentiation of PAHs source between two sampling areas. The result suggests that PAHs contamination sources were different according to the location and season surveyed. There was no an apparent relationship between the PAHs deposition flux against temperature and rainfall amount, even though summer season with the highest temperature and the largest amount of precipitation showed the lowest PAHs deposition flux. Benzo(e)pyrene/benzo(a)pyrene ratio indicated that the photo-degradation process was one of important factors to the seasonal variation of PAHs with the lower deposition fluxes.

Polycyclic Aromatic Hydrocarbons (PAHs) in Korean Soil: Distribution by Depth and Land Use (토양깊이 및 토지이용에 따른 다핵방향족탄화수소 (PAHs)의 토양 중 분포)

  • Nam, Jae-Jak;Hong, Suk-Young;Lee, Jong-Sik;So, Kyu-Ho;Lee, Sang-Hak
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.2 s.57
    • /
    • pp.129-135
    • /
    • 2007
  • Polycyclic aromatic hydrocarbons(PAHs) have been analyzed to assess vertical distribution of them with different land uses. The soils were collected from three layers; surface $(0{\sim}5cm)$, intermediate $(6{\sim}10cm)$, and deep $(11{\sim}15cm)$ layer, respectively considering land use; paddy, upland, and mountain in each site. Total 89 samples of soil from 10 sites were analyzed. Overall mean of ${\sum}PAHs$ were 137 (range $8.87{\sim}625{\mu}g\;kg^{-1}$), 203 (range $16.5{\sim}645{\mu}g\;kg^{-1}$), and $83.4{\mu}g\;kg^{-1}$ (range $6.65{\sim}667{\mu}g\;kg^{-1}$) for paddy, upland, and mountain soil, respectively. The dominant PAHs were fluoroanthene/benzo(b)fluoroanthene>pyrene>indeno(1, 2, 3-cd) pyrene in paddy, fluoroanthene/pyrene>benzo(b)fluoroanthene>chrysene in upland, and benzo(b)fluoroanthene>pyrene>chrysene in mountain soil, whereas the profile was quite similar for each other except that indeno(1, 2, 3-cd)pyrene and benzo(ghi)perylene are relatively higher in the paddy soils. Although the concentration gradient by depth was not observed in the paddy and upland soils because perturbation of soil layer by tillage, significant decrease was in the deep layer relative to the surface and intermediate layer. However, the concentration gradient of PAHs by soil depth was clearly shown in mountain soil without experiencing disturbance of tillage.

Effect of Molecular Structures on the Solubility Enhancement of Organic Contaminants by Amphiphiles (양수성 물질에 의한 유기오염물질의 수중 용해도 증가에 분자구조가 미치는 영향)

  • Cho, Hyun-Hee;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.755-764
    • /
    • 2000
  • Fate and transport of hydrophobic organic contaminants can be influenced by naturally-existing humic substances and surfactants applied to wash polluted soils in the subsurface environment. The objective of this paper is to study the solubility enhancement of four PAHs (polycyclic aromatic hydrocarbon) and p,p'-DDT in humic acid and surfactant solutions. As the number of aromatic ring is increased, the extent of solubility enhancement of PAHs by humic acid increased. Although the hydrophobicity of p,p'-DDT was the largest among five organic compounds used, the extent of solubility enhancement of p,p'-DDT by humic acid was lower than that of pyrene. In case of anionic surfactants, the extent of the increased solubility of five organic compounds by SDS and SDDBS was increased linearly, but the extent of the increased solubility of p,p'-DDT by MADS-12 was lower than that of perylene.

  • PDF

Preparation and Characterization of Swallow-Tail Terrylene Bisimide as Organic Phosphor (Swallow-Tail Terrylene Bisimide 적색 유기 형광체 제조 및 특성 연구)

  • Jung, Sung Bong;Jeong, Yeon Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2020
  • Perylene bisimide derivatives are developed for red organic phosphor because of their advantages, such as excellent luminous efficiency and high thermal stability. Despite these advantages, they have poor solubility characteristics in organic solvents and short emission wavelength as red organic phosphor for hybrid light-emitting diodes (LEDs). In this study, we prepared terrylene bisimide using a coupling reaction and swallow-tail imide group, which has excellent solubility. The structures and properties of swallow-tail terrylene bisimide (9C) were analyzed using 1H-nuclear magnetic resonance (1H-NMR), Fourier-transform infrared (FT-IR), UV/Vis spectroscopy, and thermal gravimetric analysis (TGA). The maximum absorption wavelength of (9C) in the UV/Vis spectrum was 647 nm, and the maximum emission wavelength was 676 nm. In the TGA, (9C) demonstrated good thermal stability with less than 5 wt% weight loss up to 415℃. In the solubility test, (9C) has a good solubility of more than 5 wt% in chloroform and dichloromethane. When the compounds (9C) were mixed with PMMA (polymethly methacrylate), the films showed peaks at 680 nm in the PL spectra. The results verify the suitability of (9C) as a red organic phosphor for hybrid LEDs.

Synchronous determination of polycyclic aromatic hydrocarbons(PAHs) in sediment of Ulsan Bay by synchronous 2nd derivative fluorescence spectrophotometry (이차 미분 형광 분광광도법에 의한 울산만 해양 저질토양 중의 다환 방향족 탄화수소(PAHs)의 동시 분석)

  • Yoo, Kwang-Sik;Jyoung, Jy-Young;Jeong, Seon-Yi
    • Analytical Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • Determination of some PAHs in sediments at Ulsan bay has been carried out by extraction of the components into n-hexane followed by synchronous spectrofluorimetric technique. 11 PAHs, such as acenaphthene (Ace), anthracene (Anth), benz(a)anthracene (BaA), benzo(b)fluoranthene (BbFt), benzo(k)fluoranthene (BkFt) benzo(a)pyrene (BaP), chrysene (Chry), phenanthrene (Phen), fluoranthene(Ft), perlyrene (Per), and pyrene (Pyr) in sediment samples were able to determine separately by synchronous spectrofluorimetry. Calibration curves for those components were linear for the concentration range of 0.15~166 ppb PAHs with the correlation factor of 0.9985~0.9999. The total amount of PAHs in sediments varied from 68.8 to 324.4 ng/g. The PAHs concentration was shown a tendency to increase from the outer bay to the inner basin as well the predominant contributors to the aromatic ring groups of the PAHs was 4-ring group.

Sources Apportionment Estimation of Ambient PM2.5 and Identification of Combustion Sources by Using Concentration Ratios of PAHs (대기 중 PM2.5의 오염기여도 추정 및 PAHs 농도비를 이용한 연소 오염원 확인)

  • Kim, Do-Kyun;Lee, Tae-Jung;Kim, Seong-Cheon;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.5
    • /
    • pp.538-555
    • /
    • 2012
  • The purpose of this study was to understand $PM_{2.5}$ chemical characteristics on the Suwon/Yongin area and further to quantitatively estimate $PM_{2.5}$ source contributions. The $PM_{2.5}$ sampling was carried out by a high-volume air sampler at the Kyung Hee University-Global Campus from November, 2010 to October, 2011. The 40 chemical species were then analyzed by using ICP-AES(Ag, Ba, Cr, Cu, Fe, Mn, Ni, Pb, Si, Ti, V and Zn), IC ($Na^+$, $K^+$, $NH_4{^+}$, $Mg^{2+}$, $Ca^{2+}$, $NO_3{^-}$, ${SO_4}^{2-}$ and $Cl^-$), DRI/OGC (OC1, OC2, OC3, OC4, OP, EC1, EC2 and EC3) and GC-FID (acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[a] pyrene, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene and dibenzo[a,h,]anthracene). When applying PMF model after performing proper data treatment, a total of 10 sources was identified and their contributions were quantitatively estimated. The average contribution to $PM_{2.5}$ emitted from each source was determined as follows; 26.3% from secondary aerosol source, 15.5% from soil and road dust emission, 15.3% from vehicle emission, 15.3% from illegal biomass burning, 12.2% from incineration, 7.2% from oil combustion source, 4.9% from industrial related source, and finally 3.2% from coal combustion source. In this study we used the ratios of PAHs concentration as markers to double check whether the sources were reasonably classified or not. Finally we provided basic information on the major $PM_{2.5}$ sources in order to improve the air quality in the study area.

Study on Improvement in Reliability of Measurement and Analysis for Polycyclic Aromatic Hydrocarbons in the Atmosphere (대기 중 다환방향족탄화수소(PAHs)의 측정.분석 신뢰도 향상에 관한 고찰)

  • Lee, Min-Do;Lim, Yong-Jae;Lee, Sang-Uk;Kong, Boo-Joo;Lee, Sang-Deok;Han, Jin-Seok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.5
    • /
    • pp.515-525
    • /
    • 2007
  • In this study, various techniques for measurement and analysis of PAHs in the ambient air were verified in order to select a more reliable method. Sampling and analysis of PAHs were done by the EPA TO-13a method. QA/QC of the measurement was conducted to minimize errors in sampling and analyzing processes. The linearity of calibration curve of the PAH standards was good ($R^2{\geq}0.99$). Audit accuracy was evaluated using 5 internal standards of PAHs ($Naphthalene-d_8,\;Acenaphthene-d_{10},\;Phenanthrene-d_{10},\;Chrysene-d_{12},\;Perylene-d_{12}$). Relative standard deviations of the internal standard of the PAHs were ranged from 6.22% for $acenaphthene-d_{10}$ to 8.11% for $chrysene-d_{12}$. To evaluate the surrogate recoveries, two field surrogate standards of PAHs ($fluoranthene-d_{10},\;benzo(a)pyrene-d_{12}$) and two extract surrogate standards of the PAHs ($fluorene-d_{10},\;pyrene-d_{12}$) were spiked into all samples before field sampling and sample extraction, respectively. Recoveries of field the surrogate standards ranged from $80.4{\pm}12.2%$ for $fluoranthene-d_{10}$ to $66.2{\pm}12.8%$ for $benzo(a)pyrene-d_{12}$. Extraction recoveries of the surrogate standards ranged from $70.4{\pm}10.2%$ for $fluorene-d_{10}$ to $77.6{\pm}10.8%$ for $pyrene-d_{10}$. The detection limit of benzo(a)pyrene among 16 PAHs standards for quantitation was 20 pg.

Analysis of Polycyclic Aromatic Hydrocarbon Content in Coffee Beans with Different Preparation Method (전처리 방법에 따른 커피원두 중 polycyclic aromatic hydrocarbons 함량 분석)

  • Nam, He-Jung;Seo, Il-Won;Shin, Han-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.157-161
    • /
    • 2009
  • This paper proposes an analytical method for determining amounts of polycyclic aromatic hydrocarbons (PAHs; benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i] perylene) in coffees beans. Soxhlet extraction and liquid/liquid extraction were tested for the quantification of seven PAHs. Soxhlet extraction was followed by cyclohexane extraction and used a silica cartridge. Liquid/liquid extraction was followed by n-hexane extraction and utilized a florisil cartridge. The extracts were analyzed by HPLC-fluorescence detection (FLD) with a Supelcosil LC-PAH column. The PAH recoveries ranged from 78.68 to 96.28% for the liquid/liquid extraction, and from 67.47 to 84.60% for the Soxhlet extraction.

Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area (수도권 지역에서 환경대기 중 유해대기오염물질 (VOCs, Aldehydes, PAHs) 농도분포 특성 연구)

  • Han, Jin-Seok;Lee, Min-Do;Lim, Young-Jae;Lee, Sang-Uk;Kim, Young-Mi;Kong, Boo-Joo;An, Jun-Young;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.574-589
    • /
    • 2006
  • Although concentrations of hazardous air pollutants(HAPs) are very low in the atmosphere, a growing attention has been paid on such compounds due to their high toxicity and bioaccumulation potentials into human body. In order to control and manage the amount of these materials in ambient air, it is necessary to construct monitoring system of them and to know the current concentration level of HAPs above all. In this work, a wide range of HAPs has been measured in metropolitan area to recognize the present state of HAPs in this area. The measured concentration of VOCs was higher in order of Jeonnongdong, Jeongdong, and Yangsuri. The regional difference of VOCs concentration was also highest in spring. Its total VOCs was ranged from $15.17{\sim}41.45$ ppb. Benzene $0.43{\sim}2.32$ ppb showed similar concentration level with the result of previous researches in Seoul. This value is a little higher than the average concentration 0.92 ppb for national ambient air quality standards in Japan. The concentration of aldehydes in this study was lower than those of other researches. Previous works in Seoul metropolitan area showed that the concentration of formaldehyde and acetaldehyde were higher than 5 ppb. The concentration of gaseous and particulate PAHs was high in order of winter, spring, and summer More than 90% of PAHs with low molecular weight such as 2-rings and 3-rings PAHs existed in gas phase. On the other hands, PAHs with high molecular weight more than 5-rings PAHs almost existed in particulate. In spring, the concentration of gaseous PAHs was 24.38 $ng/m^3$ in Jeongdong. Among the particulate PAHs, the concentrations of Naphthalene, Benzo(b)fluoranthene, and Benzo(g, h, i)perylene were higher than others. Especially, the concentration of Benzo(a)pyrene, a important carcinogenic pollutant, was highest in winter 0.5 $ng/m^3$ and ranged from 0.03 to 0.3 $ng/m^3$ in spring and summer, which is lower than the monitoring result in 90's. These components were mainly originated from the vehicle exhaust or heating equipment use.

Determination of polycyclic aromatic hydrocarbons in processed foods (가공식품 중 다환방향족탄화수소 분석)

  • Hu, Soo-Jung;Jin, Sun-Hee;Lee, Kwang-Ho;Choi, Dong-Mi
    • Analytical Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.196-204
    • /
    • 2010
  • In this study, the following concentrations of some PAHs (Polycyclic Aromatic Hydrocarbons) were investigated; [benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, dibenzo(a,h)anthracene, benzo(g,h,i)perylene, indeno(1,2,3-c,d)pyrene] in processed foods (n=165) and cooked meats (n=45) and established the analytical method by characteristics of processed foods. The methodology involved extraction (alkali digestion, liquid-liquid extraction, microwave extraction), clean-up on Sep-Pak Florisil Cartridges and determination by HPLC/FLD (High Performance Liquid Chromatography/Fluorescence Detector). The recovery of overall method for 8 PAHs spiked into these products ranged from 92 to 103%. The mean level of detected foods was found to be benzo(b)fluoranthene $0.9\;{\mu}g/kg$ in smoked salmon, benzo(b)fluoranthene $1.0\;{\mu}g/kg$, benzo(k)fluoranthene $0.3\;{\mu}g/kg$, benzo(a)pyrene $0.9\;{\mu}g/kg$ in dried banana, benzo(b)fluoranthene $0.2\;{\mu}g/kg$, benzo(k)fluoranthene $0.1\;{\mu}g/kg$, benzo(a)pyrene $0.2\;{\mu}g/kg$ in smoked chicken, benzo(b)fluoranthene $1.3\;{\mu}g/kg$, benzo(k)fluoranthene $0.3\;{\mu}g/kg$, benzo(a)pyrene $0.9\;{\mu}g/kg$ in charcoal grilled pork, respectively.