• 제목/요약/키워드: perturbation equations

검색결과 307건 처리시간 0.026초

Distortional effect on global buckling and post-buckling behaviour of steel box beams

  • Benmohammed, Noureddine;Ziane, Noureddine;Meftah, Sid Ahmed;Ruta, Giuseppe
    • Steel and Composite Structures
    • /
    • 제35권6호
    • /
    • pp.717-727
    • /
    • 2020
  • The homotopy perturbation method (HPM) to predict the pre- and post-buckling behaviour of simply supported steel beams with rectangular hollow section (RHS) is presented in this paper. The non-linear differential equations solved by HPM derive from a kinematics where large twist and cross-sections distortions are considered. The results (linear and non-linear paths) given by the present HPM are compared to those provided by the Newton-Raphson algorithm with arc length and by the commercial FEM code Abaqus. To investigate the effect of cross-sectional distortion of beams, some numerical examples are presented.

Nonlinear vibration of conservative oscillator's using analytical approaches

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.671-682
    • /
    • 2016
  • In this paper, a new analytical approach has been presented for solving nonlinear conservative oscillators. Variational approach leads us to high accurate solution with only one iteration. Two different high nonlinear examples are also presented to show the application and accuracy of the presented approach. The results are compared with numerical solution using runge-kutta algorithm in different figures and tables. It has been shown that the variatioanl approach doesn't need any small perturbation and is accurate for nonlinear conservative equations.

비틀림 및 횡압럭을 받고 있는 복합재 원통쉘의 좌굴 (Buckling of Composite Cylindrical Shells Sugjected ot Torsion of Lateral Pressure)

  • 한병기;이성희;유택인
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1436-1444
    • /
    • 1996
  • The problem ofinstability of laminated circular cylindrical shell under the action of torsio or lateral pressure is investigated. The analysis is based on the Sander's theory for finite deformations of thin shell. The buckling is elastic for thin compoisite shell nad the geometry is assumed to be free of initial imperfections. The equilibrium equations are obrained by usitn the p[erturbation technique. Solution procedure is based on the Galerkin mehtod. The computer program for numerical results is made for several stacking sequence, length-to-radius ratio, and radius-to-thickness ratio. The numerical results of buckling load are present.

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF

음향 압축기 설계를 위한 축대칭 공명튜브 내부음장의 수치해석 및 특성연구 (Numerical Analysis of Nonlinear Acoustic Characteristics in Axisymmetric Resonant Tubes for Sonic Compressors)

  • 전영두;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.1009-1014
    • /
    • 2001
  • A numerical investigation on nonlinear oscillations of gas in an axisymmetric resonant tube is presented. When a tube is oscillated at a resonant frequency, acoustic variables such as density, velocity, and pressure undergo very large perturbation, often described as nonlinear oscillation. In order to analyze these phenomena, axisymmetric 2-D nonlinear governing equations have been derived and solved numerically. Numerical simulations were accomplished for cylindrical, conical, and 1/2 cosine-shape tubes, which have same volume and length. For conical and 1/2 cosine-shape tubes, very large variation of pressures can be induced without shock formation except the cylindrical tube. In addition, the results well agree to those of 1-D simple model analysis.

  • PDF

Accurate analytical solutions for nonlinear oscillators with discontinuous

  • Bayat, Mahdi;Bayat, Mahmoud;Pakar, Iman
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.349-360
    • /
    • 2014
  • In this study, three approximate analytical methods have been proposed to prepare an accurate analytical solution for nonlinear oscillators with fractional potential. The basic idea of the approaches and their applications to nonlinear discontinuous equations have been completely presented and discussed. Some patterns are also presented to show the accuracy of the methods. Comparisons between Energy Balance Method (EBM), Variational Iteration Method (VIM) and Hamiltonian Approach (HA) shows that the proposed approaches are very close together and could be easily extend to conservative nonlinear vibrations.

Lyapunov 설계에 입각한 로보트 매니퓰레이터의 적응제어 (Adaptive Control of Robot Manipulators Using Lyapunov Design)

  • 유준;남상우;김병연;박은영
    • 대한전자공학회논문지
    • /
    • 제24권6호
    • /
    • pp.936-941
    • /
    • 1987
  • This paper prexents an adaptive control scheme which adjusts any deviations of the manipulator from a desired trajectory. The scheme combines a new adaptive control and the conventional nominal control which drives the manipulator to the neighborhood of the trajectory. The proposed adaptive control is developed based on the lineatized perturbation equations in the vicinity of the trajectory and the Lyapunov design method, which makes the perturbations exponentially decay and has less computational requirements than the existing ones.

  • PDF

훅스 조인트로 연결된 축계의 비선형 비틀림 진동 (Non-Linear Torsional Oscillations of a System Incorporating a Hooke's Joint)

  • Chang, Seo-Il;Lee, Jang-Moo
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 춘계학술대회논문집; 전남대학교, 19 May 1995
    • /
    • pp.110-115
    • /
    • 1995
  • In this paper, the problem of non-linear torsional oscillation of a system incorporating a Hooke's joint is studied. Classical perturbation methods including higher order averaging and bifurcation theory are adopted for analysis. The equation of motion derived by Porter[1] is presented and the type of the system is identified. It has been found that two important cases deserve extensive study. Method of higher order averaging which is a main research tool in this study is introduced briefly. The averaged equations are studied analyticallyand numerically and the method of averaging has been found to be effective to study complex non-linear system.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED REACTION-CONVECTION-DIFFUSION PROBLEMS WITH BOUNDARY AND INTERIOR LAYERS

  • Shanthi V.;Ramanujam N.;Natesan S.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.49-65
    • /
    • 2006
  • A robust numerical method for a singularly perturbed second-order ordinary differential equation having two parameters with a discontinuous source term is presented in this article. Theoretical bounds are derived for the derivatives of the solution and its smooth and singular components. An appropriate piecewise uniform mesh is constructed, and classical upwind finite difference schemes are used on this mesh to obtain the discrete system of equations. Parameter-uniform error bounds for the numerical approximations are established. Numerical results are provided to illustrate the convergence of the numerical approximations.

A NEW SOLUTION METHOD FOR STATE EQUATIONS OF NONLINEAR SYSTEM

  • Zhang, Cheng-Hui;Tan, Cheng-Hui;Cui, Na-Xin
    • Journal of applied mathematics & informatics
    • /
    • 제6권1호
    • /
    • pp.175-184
    • /
    • 1999
  • Along with the computation and analysis for nonlinear system being more and more involved in the fields such as automation control electronic technique and electrical power system the nonlin-ear theory has become quite a attractive field for academic research. In this paper we derives the solutions for state equation of nonlinear system by using the inverse operator expression of the so-lutions is obtained. An actual computation example is given giving a comparison between IOM and Runge-kutta method. It has been proved by our investigation that IOM has some distinct advantages over usual approximation methods in that it is computationally con-venient rapidly convergent provides accurate solutions not requiring perturbation linearization or the massive computation inherent in discrietization methods such as finite differences. So the IOM pro-vides an effective method for the solution of nonlinear system is of potential application valuable in nonlinear computation.