• 제목/요약/키워드: personalized genomic medicine

검색결과 43건 처리시간 0.048초

Overview of personalized medicine in the disease genomic era

  • Hong, Kyung-Won;Oh, Berm-Seok
    • BMB Reports
    • /
    • 제43권10호
    • /
    • pp.643-648
    • /
    • 2010
  • Sir William Osler (1849-1919) recognized that "variability is the law of life, and as no two faces are the same, so no two bodies are alike, and no two individuals react alike and behave alike under the abnormal conditions we know as disease". Accordingly, the traditional methods of medicine are not always best for all patients. Over the last decade, the study of genomes and their derivatives (RNA, protein and metabolite) has rapidly advanced to the point that genomic research now serves as the basis for many medical decisions and public health initiatives. Genomic tools such as sequence variation, transcription and, more recently, personal genome sequencing enable the precise prediction and treatment of disease. At present, DNA-based risk assessment for common complex diseases, application of molecular signatures for cancer diagnosis and prognosis, genome-guided therapy, and dose selection of therapeutic drugs are the important issues in personalized medicine. In order to make personalized medicine effective, these genomic techniques must be standardized and integrated into health systems and clinical workflow. In addition, full application of personalized or genomic medicine requires dramatic changes in regulatory and reimbursement policies as well as legislative protection related to privacy. This review aims to provide a general overview of these topics in the field of personalized medicine.

DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor-resistant lung cancer therapy

  • Haejeong Heo;Jong-Hwan Kim;Hyun Jung Lim;Jeong-Hwan Kim;Miso Kim;Jaemoon Koh;Joo-Young Im;Bo-Kyung Kim;Misun Won;Ji-Hwan Park;Yang-Ji Shin;Mi Ran Yun;Byoung Chul Cho;Yong Sung Kim;Seon-Young Kim;Mirang Kim
    • Experimental and Molecular Medicine
    • /
    • 제54권
    • /
    • pp.1236-1249
    • /
    • 2022
  • Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.

유전의료시대의 "맞춤의학" (Challenge of Personalized Medicine in the Genomic Era)

  • 김현주
    • Journal of Genetic Medicine
    • /
    • 제5권2호
    • /
    • pp.89-93
    • /
    • 2008
  • "Personalized medicine," the goal of which is to provide better clinical care by applying patient's own genomic information to their health care is a global challenge for the $21^{st}$ century "genomic era." This is especially true in Korea, where provisions for clinical genetic services are inadequate for the existing demand, let alone future demands. Genomics-based knowledge and tools make it possible to approach each patient as a unique biological individual, which has led to a paradigm-shift in medical practice, giving it more of a predictive focus as compared with current treatment oriented approach. With recent advancements in genomics, many genetic tests, such as susceptibility genetic tests, have been developed for both rare single gene diseases and more common multifactorial diseases. Indeed, genetic tests for presymtomatic individuals and genetic tests for drug response have become widely available, and personalized medicine will face the challenge of assisting patients who use such tests to make appropriate and wise use of genetic risk assessment. A major challenge of genomic medicine lies in understanding and communicating disease risk in order to facilitate and support patients and their families in making informed decisions. Establishment of a health care system with provisions for genetic counseling as an integral part of health care service, in addition to genomic literacy of health care providers, is vital to meet this growing challenge. Realization of the promise of personalized medicine in the era of genomics for improvement of health care is dependent on further development of next generation sequencing technology and affordable sequencing test costs. Also necessary will be policy development concerning the ethical, legal and social issues of genomic medicine and an educated and ready medical community with clinical practice guidelines for genetic counseling and genetic testing.

  • PDF

Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing

  • Jeon, Sol A;Park, Jong Lyul;Kim, Jong-Hwan;Kim, Jeong Hwan;Kim, Yong Sung;Kim, Jin Cheon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제17권3호
    • /
    • pp.32.1-32.6
    • /
    • 2019
  • Currently, Illumina sequencers are the globally leading sequencing platform in the next-generation sequencing market. Recently, MGI Tech launched a series of new sequencers, including the MGISEQ-2000, which promise to deliver high-quality sequencing data faster and at lower prices than Illumina's sequencers. In this study, we compared the performance of two major sequencers (MGISEQ-2000 and HiSeq 4000) to test whether the MGISEQ-2000 sequencer delivers high-quality sequence data as suggested. We performed RNA sequencing of four human colon cancer samples with the two platforms, and compared the sequencing quality and expression values. The data produced from the MGISEQ-2000 and HiSeq 4000 showed high concordance, with Pearson correlation coefficients ranging from 0.98 to 0.99. Various quality control (QC) analyses showed that the MGISEQ-2000 data fulfilled the required QC measures. Our study suggests that the performance of the MGISEQ-2000 is comparable to that of the HiSeq 4000 and that the MGISEQ-2000 can be a useful platform for sequencing.

A ChIP-Seq Data Analysis Pipeline Based on Bioconductor Packages

  • Park, Seung-Jin;Kim, Jong-Hwan;Yoon, Byung-Ha;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제15권1호
    • /
    • pp.11-18
    • /
    • 2017
  • Nowadays, huge volumes of chromatin immunoprecipitation-sequencing (ChIP-Seq) data are generated to increase the knowledge on DNA-protein interactions in the cell, and accordingly, many tools have been developed for ChIP-Seq analysis. Here, we provide an example of a streamlined workflow for ChIP-Seq data analysis composed of only four packages in Bioconductor: dada2, QuasR, mosaics, and ChIPseeker. 'dada2' performs trimming of the high-throughput sequencing data. 'QuasR' and 'mosaics' perform quality control and mapping of the input reads to the reference genome and peak calling, respectively. Finally, 'ChIPseeker' performs annotation and visualization of the called peaks. This workflow runs well independently of operating systems (e.g., Windows, Mac, or Linux) and processes the input fastq files into various results in one run. R code is available at github: https://github.com/ddhb/Workflow_of_Chipseq.git.

BaSDAS: a web-based pooled CRISPR-Cas9 knockout screening data analysis system

  • Park, Young-Kyu;Yoon, Byoung-Ha;Park, Seung-Jin;Kim, Byung Kwon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • 제18권4호
    • /
    • pp.46.1-46.4
    • /
    • 2020
  • We developed the BaSDAS (Barcode-Seq Data Analysis System), a GUI-based pooled knockout screening data analysis system, to facilitate the analysis of pooled knockout screen data easily and effectively by researchers with limited bioinformatics skills. The BaSDAS supports the analysis of various pooled screening libraries, including yeast, human, and mouse libraries, and provides many useful statistical and visualization functions with a user-friendly web interface for convenience. We expect that BaSDAS will be a useful tool for the analysis of genome-wide screening data and will support the development of novel drugs based on functional genomics information.

Generation and analysis of whole-genome sequencing data in human mammary epithelial cells

  • Jong-Lyul Park;Jae-Yoon Kim;Seon-Young Kim;Yong Sun Lee
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.11.1-11.5
    • /
    • 2023
  • Breast cancer is the most common cancer worldwide, and advanced breast cancer with metastases is incurable mainly with currently available therapies. Therefore, it is essential to understand molecular characteristics during the progression of breast carcinogenesis. Here, we report a dataset of whole genomes from the human mammary epithelial cell system derived from a reduction mammoplasty specimen. This system comprises pre-stasis 184D cells, considered normal, and seven cell lines along cancer progression series that are immortalized or additionally acquired anchorage-independent growth. Our analysis of the whole-genome sequencing (WGS) data indicates that those seven cancer progression series cells have somatic mutations whose number ranges from 8,393 to 39,564 (with an average of 30,591) compared to 184D cells. These WGS data and our mutation analysis will provide helpful information to identify driver mutations and elucidate molecular mechanisms for breast carcinogenesis.

Genomic data Analysis System using GenoSync based on SQL in Distributed Environment

  • Seine Jang;Seok-Jae Moon
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.150-155
    • /
    • 2024
  • Genomic data plays a transformative role in medicine, biology, and forensic science, offering insights that drive advancements in clinical diagnosis, personalized medicine, and crime scene investigation. Despite its potential, the integration and analysis of diverse genomic datasets remain challenging due to compatibility issues and the specialized nature of existing tools. This paper presents the GenomeSync system, designed to overcome these limitations by utilizing the Hadoop framework for large-scale data handling and integration. GenomeSync enhances data accessibility and analysis through SQL-based search capabilities and machine learning techniques, facilitating the identification of genetic traits and the resolution of forensic cases. By pre-processing DNA profiles from crime scenes, the system calculates similarity scores to identify and aggregate related genomic data, enabling accurate prediction models and personalized treatment recommendations. GenomeSync offers greater flexibility and scalability, supporting complex analytical needs across industries. Its robust cloud-based infrastructure ensures data integrity and high performance, positioning GenomeSync as a crucial tool for reliable, data-driven decision-making in the genomic era.

맞춤의학 시대의 개인 유전체 서열의 해독과 스마트한 이용 (Individual Genome Sequences and Their Smart Application In Personalized Medicine)

  • 김동민;정해영;김일철;원용관
    • 스마트미디어저널
    • /
    • 제2권4호
    • /
    • pp.34-40
    • /
    • 2013
  • 다양하고 빠른 차세대 유전체 서열 분석기를 사용한 개인 유전체 분석은 생명과학 연구뿐만 아니라 질병의 진단과 치료를 포함하는 의학 분야까지 새로운 지평을 열고 있다. 저렴한 비용으로 읽혀진 개인 유전체 서열은 통합 과정을 거쳐 유전체 이상을 점검할 수 있고, 얻어진 서열 데이터는 유전자 변이성 연구, 유전체 발현 연구, 후성유전학적 연구, 유전체 주석화 등에 이용될 수 있다. 개인 유전체 데이터는 생물학적 연구 결과와 임상 연구 데이터를 연계하여 질환 위험도의 예측과 맞춤 치료에 이용할 수 있게 되었다. 개인 맞춤의학 시대에 전문적 데이터와 일반인 사용자의 간극을 메우기 위해 스마트 미디어 기기와 같은 적극적인 인터페이스의 개발이 시급하다.

  • PDF