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Nowadays, huge volumes of chromatin immunoprecipitation-sequencing (ChIP-Seq) data are generated to increase the 
knowledge on DNA-protein interactions in the cell, and accordingly, many tools have been developed for ChIP-Seq analysis. 
Here, we provide an example of a streamlined workflow for ChIP-Seq data analysis composed of only four packages in 
Bioconductor: dada2, QuasR, mosaics, and ChIPseeker. ‘dada2’ performs trimming of the high-throughput sequencing data. 
‘QuasR’ and ‘mosaics’ perform quality control and mapping of the input reads to the reference genome and peak calling, 
respectively. Finally, ‘ChIPseeker’ performs annotation and visualization of the called peaks. This workflow runs well 
independently of operating systems (e.g., Windows, Mac, or Linux) and processes the input fastq files into various results in 
one run. R code is available at github: https://github.com/ddhb/Workflow_of_Chipseq.git.

Keywords: chromatin immunoprecipitation, data analysis, next-generation sequencing, statistical

Introduction

Various proteins interact with DNA in the nucleus. These 
interactions include many essential cellular processes, such 
as DNA replication, recombination, repair, transcription, 
and histone modifications [1]. Recent works have establi-
shed that the eukaryotic chromatin is a dynamic and 
complex assembly of DNA, RNA, and proteins and is 
regulated by various post-translational modifications, inclu-
ding histone modifications, DNA methylation, long-range 
interactions, and non-coding RNAs [2]. The development of 
chromatin immunoprecipitation combined with chip or 
sequencing (ChIP-chip and later ChIP-Seq) has provided 
powerful methods to elucidate the complex interaction 
between DNA and proteins in the nucleus and has produced 
interesting data on complex DNA-protein interactions in the 
cell. By allowing genomewide analysis of DNA-protein 
interactions and histone modifications, ChIP-Seq has 
become one of the essential methods for genomic and 
epigenomic research.

Along with the development of ChIP-Seq data generation 

methods, various algorithms, methods, and tools have been 
developed for various steps during ChIP-Seq data analysis. 
Now, the standard ChIP-Seq data analysis process consists of 
a quality check (QC), mapping, peak calling, statistical 
analysis, annotation, and visualization. There are several 
well-known tools for these steps: ‘Trim Galore’ is one of the 
best programs to trim fastq reads, and ‘FastQC’ is also one of 
the major tools for quality control and pre-processing of fastq 
files. These tools are found at http://www.bioinformatics. 
babraham.ac.uk/projects/. Bowtie and bwa are two repre-
sentative tools for read mapping [3, 4]. For peak calling, 
MACS2 is one of the most widely used tools in ChIP-Seq data 
analysis [5]. ‘MAnorm’ can be conveniently used for sta-
tistical analysis of ChIP-Seq data [6], and ‘PAVIS’ is available 
for biological interpretation of ChIP-Seq peaks in a user-fri-
endly web interface [7]. While many tools have been devel-
oped for ChIP-Seq data analysis, no tool can provide all the 
necessary steps of ChIP-Seq data analysis in one environ-
ment. Also, many of the ChIP-Seq analysis tools need 
Unix-like environments (e.g., UNIX/LINUX or Mac OS X); 
so, most users of the Windows operating system have 
difficulty in using them. 
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Table 2. Bioconductor packages used in this study

Package Version Description Reference

dada2 1.2.1 Manipulating sequencing data [8]
QuasR 1.140 Quantify and annotate short reads [9]
mosaics 2.12.0 Model based on one- and two-sample analysis and inference for ChIP-seq [10]
ChIPseeker 1.10.2 ChIP peak annotation, comparison, and visualization [11]

Table 1. Public datasets used in ChIP-Seq data analysis

Name SRR number GSM number Peak shape

HeLa control SRR227391 GSM733659 -
HeLa H3K4me3 SRR227441 GSM733682 Sharp
HeLa H3K27me3 SRR227473 GSM733696 Broad

ChIP-Seq, chromatin immunoprecipitation-sequencing.

Fig. 1. Workflow of chromatin immunoprecipitation-sequencing 
(ChIP-Seq) data analysis using Bioconductor packages. Four 
packages are used in this workflow. The ‘dada2’ package performs
the trimming of high-throughput sequencing file. The ‘QuasR’
package performs alignment and quality check. The ‘mosaic’
package, which is the core of this workflow, performs the peak 
calling step. The last package, ‘ChIPseeker,’ performs annotation, 
visualization, and functional enrichment analysis.

The Bioconductor project, which was launched in 2001, 
now contains more than 2,000 packages that facilitate the 
analysis and interpretation of high-throughput genomic 
data. As the Bioconductor project is based on the R statistical 
language, which is available for all of the major operating 
systems, most packages in Bioconductor can be run across 
different operating systems. In this regard, packages in the 
Bioconductor project provide an excellent platform for 
developing a streamlined analysis pipeline that can be run 
independently of platform. In this work, we selected four 
packages (dada2 [8], QuasR [9], mosaics [10], and ChI-
Pseeker [11]) from the Bioconductor project, and made a 
ChIP-Seq data analysis pipeline that performs all the 
essential steps in one script. We hope that this example will 
help biologists with few bioinformatics skills in their 
analysis of ChIP-Seq data. 

Methods
Public data download

While most researchers are likely to analyze their own 
data, some users may download public ChIP-Seq data from 
repositories, such as Short Read Archive (SRA) and the 
Encyclopedia of DNA Elements (ENCODE) project data 
portal. In this paper, we used a dataset from Gene Expression 
Omnibus (GSE29611; the data can be found at http:// 
www.ebi.ac.uk/ena/data/view/SRP006944), one of the datasets 
from the ENCODE project [12], which aims to identify all 
functional elements in the human genome. Among the many 
samples in GSE29611, we used two samples from HeLa cells 
(Table 1). 

Description of packages and testing environment

We used only four packages from beginning to end. The 
list of packages is shown in Table 2. The workflow in this 
paper was tested on a PC with an Intel i7 3.60 GHz processor 
and 16 GB memory using Microsoft R Open (version 3.3.0) 
in the Windows 8.1 pro K operating system.

Results
Overview of the ChIP-Seq analysis workflow 

We propose a ChIP-Seq analysis workflow composed of 
only four Bioconductor packages (Table 2). The four 
packages are available in all major operating systems and are 
simple to use (Fig. 1). 
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Fig. 2. Boxplot of the quality score 
distribution per base position in reads.
It shows the distribution of the base 
quality values for each position from 
the input sequence. In this figure, 
both the control sample and IP 
sample have very high quality scores.

Setting the R environment and installing libraries to 
analyze (step 0 to step 1)

First, we provide a short R code to install the Biocon-
ductor-based program. Next, it provides the ‘biocLite’ 
command to install the necessary package to analyze, the 
‘setwd’ command to set up the working directory, and the 
‘library’ command to load the package.

(Optional) Data download from public repository 
(step 2)

We downloaded two samples of the GSE29611 dataset 
from the European Bioinformatics Institute (EBI) database. 
We used EBI instead of SRA, as EBI provides both fastq and 
sra files, while SRA provides only sra files. By ftp protocol, it 
took about 45 min to download two fastq files from the EBI 
ftp site.

Trimming the sequencing file (step 3)

fastq file filtering is an important step when dealing with 
high-throughput sequencing data, because low-quality 
sequences can contain unexpected and misleading errors; 
especially, Illumina sequencing quality tends to drop off at 
the ends of reads, and the initial nucleotides can also be 
problematic due to calibration issues, such as trimming 
issues. The ‘dada2’ package can filter and trim a fastq file 
with the ‘fastqFilter’ function. ‘fastqFilter’ takes an input 

fastq file and filters it, based on several user-definable 
criteria, and outputs those reads that pass the filter and their 
associated qualities to a new fastq file. The main parameters 
of the ‘fastqfilter’ function are ‘fn’ and ‘fout,’ which indicate 
the path to the input fastq file and to the output file. 
Additionally, we adjusted the ‘compress’ option to ‘TRUE,’ 
because we use the compressed fastq file for analysis.

Sequence alignment (step 4)

The first step in ChIP-Seq data analysis is to align fastq 
files to a reference genome. The names of fastq files and the 
reference genome information (either a fasta file or BS-
genome package) should be provided. As mapping is a 
time-consuming job, parallel processing using multiple 
cores is highly recommended. In R, parallel programming is 
supported by the 'BiocParallel' package, found at https:// 
bioconductor.org/packages/release/bioc/html/BiocParall
el.html. QuasR, the abbreviation for ‘Quantify and Annotate 
Short Reads,’ provides a framework for the quantification 
and analysis of short reads. ‘qAlign’ is the function that 
generates alignment files in BAM format for all input 
sequence files against the reference genome. The qAlign 
function is a wrapper for the bowtie [3] and SpliceMap [13] 
tools.

Quality check (step 5)

The next step after sequence alignment is the QC of the 
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Fig. 3. Coverage plot. It visualizes the peak locations over the whole genome. It is made for calculating the coverage of peak regions 
over chromosomes.

aligned reads. The QC is performed by the ‘qQCReport’ 
function of the qAlign package. It samples a random subset 
of sequences and alignments from each sample or an input 
file and generates a series of diagnostic plots for estimating 
data quality by various methods. The output consists of 
seven plots. The main plot is shown in Fig. 2, and the other 
six plots are shown in Supplementary Files (Fig. 2, Supple-
mentary Figs. 1–6).

Peak calling (step 6)

For ChIP-Seq peak calling, we chose the ‘mosaics’ 
package, which uses an adaptive and robust statistical 
approach; ‘mosaics’ is an acronym of “Model-Based One- 
and Two-sample Analysis and Inference for ChIP-Seq data.” 
It implements a flexible parametric mixture modeling 
approach for detecting peaks—e.g., enriched regions—in 
one-sample (ChIP sample) or two-sample (ChIP and mat-
ched control samples) ChIP-Seq data. It can account for 
mappability and GC content biases that arise in ChIP-Seq 
data [10]. Recently, ‘mosaics’ extended the framework with 
a hidden Markov Model (HMM) architecture, named 

mosaics-HMM [14], to identify broad peaks; so, mosaics is 
useful for the analysis of both sharp and broad peaks. As for 
broad peaks, mosaics has two methods: ‘mosaicsFitHMM’ 
and ‘mosaicsPeakHMM.’ For computational efficiency, ‘mo-
saicsFitHMM’ utilizes MOSAiCS model fit as estimates of 
emission distribution of the MOSAiCS-HMM model. In 
addition, it also considers MOSAiCS peak calling results at a 
specified false discovery rate (FDR) level as initial values by 
default. For more information, please peruse the vignette on 
'mosaics' in Bioconductor. Here, we describe an example of a 
sharp peak calling process. 

Calling of sharp peaks (steps 6-2 to 6-5)

For peak calling, mosaics first constructs bin-level files 
from aligned read files for modeling and visualization. The 
‘infile’ argument indicates the name of the aligned files, and 
the ‘fileFormat’ argument indicates the data format of the 
‘infile.’ Also, several arguments should be provided: ‘bychr,’ 
‘PET,’ ‘fragLen,’ ‘binsize,’ and ‘capping.’ The meaning of 
each argument is given in ‘constructing separate bin-level 
file for each chromosome,’ ‘paired-end tag,’ ‘average 
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Fig. 4. (A) Heatmap of chromatin 
immunoprecipitation (ChIP) binding 
to transcription start site (TSS) regions.
It shows the profile of ChIP peaks 
binding to TSS regions, which are 
defined as the flanking sequence of 
TSSs. (B) Average profile of ChIP 
peaks binding to TSS regions. The 
average profile of the ChIP peaks is 
a graph showing the read count 
frequency in the range from –3000 bp
to +3000 bp. Since the H3K4me3 
state is a promoter marker, the read 
count frequency is high in the TSS 
region.

fragment length,’ ‘size of bins,’ and ‘maximum number of 
reads allowed to start at each nucleotide position,’ respec-
tively [10]. Then, binned data are read into the R enviro-
nment. Here, for the ‘type’ argument, ‘input’ and ‘chip’ 
indicate either a control or ChIP-Seq data file, respectively. 
‘readBins’ is a versatile function, which imports and pre-
processes all or a subset of bin-level ChIP-Seq data, including 
ChIP data, matched control data, mappability score, GC 
content score, and sequence ambiguity score. The next step 
is to fit the MOSAiCS model. The ‘mosaicsFit’ function 
performs fitting of one-sample or two-sample MOSAiCS 
models with one signal component or two signal com-
ponents. The ‘analysisType’ parameter uses ‘OS (one-sample 
analysis),’ ‘TS (two-sample analysis using mappability and 
GC content),’ or ‘IO (two-sample analysis without using 
mappability and GC content).’ The ‘bgEst’ parameter selects 
a background estimation approach from either ‘matchLow 
(estimation using bins with low tag counts)’ or ‘rMOM 
(estimation using robust method of moment).’ After model 
fitting, peaks are identified. The sharp peaks are identified by 
applying the two-signal component model at a given FDR. 
Here, the argument ‘signalModel=2S’ indicates the two-signal 
component model, while ‘signalModel=1S’ indicates the 
one-signal component model. The FDR can be controlled at 
the desired level by specifying the ‘FDR’ argument. Initial 
nearby peaks are merged if the distance (bp) between them 
is less than maxgap on the argument ‘maxgap.’ The ‘minsize’ 
argument sets a threshold to remove peaks whose width is 
narrower than the given value. ‘thres’ sets a threshold for 
ChIP tag counts for peaks. Called peaks can be exported in 
diverse file formats, including the TXT, BED, GFF, narrow-
Peak, and BroadPeak file formats. 

Calling of broad peaks (Supplementary Methods)

We provide another version of R code for calling broad 
peaks (Supplementary Methods, Supplementary Figs. 7–11).

Annotation and visualization (step 7)

The main input format for the ChIPSeeker package [13] is 
a bed file. ‘readPeakFile’ reads data from the input file and 
stores them in a data.frame or Granges object.

ChIP peaks coverage plot (Step 7-2)
The ‘Covplot’ function calculates the coverage of peak 

regions over chromosomes and generates a figure (Fig. 3). 
The ‘weightCol’ argument indicates the peak score, and ‘V5’ 
means the fifth column.

Heatmap and average profiling of chip peaks binding to trans-
cription start site regions (Fig. 4A and 4B) (step 7-3)

First, transcription start site (TSS) regions are prepared by 
invoking the ‘getPromoter’ function. Then, peaks are map-
ped to the TSS regions, generating tagMatrix. The ‘tag-
Heatmap’ function plots the heatmap based on the tagMatrix 
data. The ‘plotAvgProf’ function plots the average profile of 
the peaks binding to TSS regions (i.e., 5' to 3') based on read 
count frequency.

Peak annotation (step 7-4)
The TSS region, defined by default from –3 kb to +3 kb; 

the Txdb, and the corresponding annoDb of interest (here, 
Homo sapiens) should be provided for gene annotation. Then, 
the annotatePeak function generates annotation information 
for the given input. Basically, the position and strand 
information of the nearest genes are reported. The distance 
from the peak to the TSS of the nearest gene is also reported. 
The genomic region of the peak is reported in the annotation 
column. Since some annotations may overlap, the 
‘annotePeak’ package adopts the following priority in the 
genomic annotation: Promoter → 5' UTR → 3' UTR → Exon 
→ Intron → Downstream → Intergenic.
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Fig. 5. Pie chart of different genomic regions. There are various parts, including distance promoter and two untranslated regions (UTRs). 
In particular, the distal intergenic region and the promoter region for 1−2 kb are dominant in the analysis above.

Fig. 6. UpSet plot. Matrix layout for all interactions of 7 regions, sorted by size. Dark circles in the matrix indicate sets that are part 
of the intersection. UTR, untranslated region.

Visualization of genomic annotation (step 7-4)
The ‘annotatePeak’ function assigns peaks to genomic 

annotation in the “annotation” column of the output, which 
includes whether a peak is in the TSS, exon, 5' untranslated 
region (UTR), or 3' UTR or intronic or intergenic. The 
‘plotAnnoPie’ function provides a pie chart of peak anno-
tations by genomic region (Fig. 5). The distribution of 
genomic annotation can also be visualized by a histogram 

(Fig. 6).

Functional enrichment analysis (step 7-5)
The annotated genes can be used as an input for functional 

enrichment analysis. The ‘seq2gene’ function changes peak 
information into gene information, which is used by the 
‘enrichPathway’ function for pathway enrichment analysis 
(Fig. 7).
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Fig. 7. Functional enrichment analysis. It identifies predominant biological themes among the nearest genes by incorporating biological 
knowledge provided by biological ontologies. It shows results in the gene region from –1000 to +1000 of the transcription start site. 
The top 3 circles in the figure have p-values of 1.837e-32, 1.970e-29, and 6.854e-21, respectively.

Discussion

ChIP-Seq is one of major applications using next-generation 
sequencing technology and provides valuable information 
on DNA-protein interactions and epigenomic modifications. 
Due to its high volume of sequence data, most ChIP-Seq data 
analysis is performed in Unix/Linux or equivalent environ-
ments (e.g., Mac OS X). Considering that the Microsoft 
Windows operating system (OS) still dominates the market 
share of the PC OS, it would be helpful to have a ChIP-Seq 
data analysis pipeline that can be run on Windows OS 
without the use of a Unix-like OS environment. 

In this regard, R/Bioconductor provides an excellent 
opportunity to make an analysis pipeline in an OS-inde-
pendent manner. First, R/Bioconductor is available for all 
major platforms (Windows, Mac OS X, and most Linux). 
Second, most R/Bioconductor packages and scripts can be 
run across different OS platforms without any modifications. 
Third, the Bioconductor is an open-source, interdisciplinary, 
and collaborative software project for the analysis and 

comprehension of high-throughput data in genomics and 
molecular biology and provides a lot of useful packages for 
genomic data analysis [15]. Thus, many useful analysis 
pipelines can be constructed by deliberately selecting ade-
quate packages among thousands of available high-quality 
packages. Fourth, R/Bioconductor provides many sophisti-
cated statistical analysis and visualization tools. Indeed, 
R/Bioconductor is one of the most versatile and advanced 
visualization systems; so, many high-quality plots in the 
scientific community are produced using R/Bioconductor. 

In this work, we presented a ChIP-Seq data analysis 
pipeline using only four Bioconductor packages. The entire 
workflow took only about 2 h in the Windows 7 OS with two 
Intel i7 quad-cores (3.4 GHz) and 16 GB RAM. Thus, for 
ChIP-Seq data analysis, we insist that high-end workstations 
and servers with UNIX-like environments are not mandatory 
any longer. With careful selection of packages and tools, it is 
possible to construct an efficient data analysis pipeline on a 
PC machine. Although more than 60 packages are available 
for ChIP-Seq data analysis, we deliberately selected four 
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packages to encompass all the necessary steps of ChIP-Seq 
data analyses, including trimming, mapping and QC, peak 
calling, peak annotation, and visualization. However, we 
acknowledge that many other packages with similar func-
tions are also available and can thus be used to construct 
alternative data analysis pipelines. 

In the next version, we will add an option to choose a peak 
calling algorithm with various statistical analysis options 
from diverse programs. We hope that our work will help 
most biologists perform ChIP-Seq data analysis without 
setting up additional Unix-like environments.

Supplementary materials

Supplementary data including 11 figures and Supple-
mentary methods can be found with this article online at 
http://www.genominfo.org/src/sm/gni-15-11-s001.pdf.
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