• 제목/요약/키워드: personal dose equivalent

검색결과 20건 처리시간 0.02초

Panasonic UD-809P 알비도 열형광선량계를 이용한 중성자 개인선량당량 평가 (Neutron Personal Dose Equivalent Evaluation Using Panasonic UD-809P Type TLD Albedo Dosimeters)

  • 신상운;손중권;김화
    • Journal of Radiation Protection and Research
    • /
    • 제24권3호
    • /
    • pp.143-154
    • /
    • 1999
  • Panasonic UD-809P 알비도 중성자 열형광선량계를 팬텀에 장착시켜 원자력발전소에서 중성자 개인선량당량을 측정하였다. 측정된 판독값으로부터 Panasonic 사의 사용자 매뉴얼에 제시되어 있는 방법을 이용하여 열중성자와 초열중성자 및 속중성자로 인한 개인선량당량을 평가하였다. 그 결과 열중성자 성분의 비율이 높은 원자력발전소에서는 속중성자로 인한 개인선량당량을 적절하게 평가할 수 없는 것으로 확인되었는데, 이는 열중성자로 인한 알비도 성분이 열형광선량계로 재입사 되는 양이 이론적인 값과 상당한 차이가 나기 때문인 것으로 추정되었다. 따라서 원자력발전소와 같이 열중성자 성분의 비율이 높은 조건에서 속중성자로 인한 중성자 개인선량당량을 평가하기 위하여 중성자 성분을 열중성자와 속중성자로 구분한 새로운 중성자 선량계산 알고리즘을 제안하였으며, 각각의 성분에 대한 개인선량당량과 교정인자, 민감도 인자 평가공식을 유도하였다.

  • PDF

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • 제47권2호
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.

Ambient dose equivalent measurement with a CsI(Tl) based electronic personal dosimeter

  • Park, Kyeongjin;Kim, Jinhwan;Lim, Kyung Taek;Kim, Junhyeok;Chang, Hojong;Kim, Hyunduk;Sharma, Manish;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1991-1997
    • /
    • 2019
  • In this manuscript, we present a method for the direct calculation of an ambient dose equivalent (H* (10)) for the external gamma-ray exposure with an energy range of 40 keV to 2 MeV in an electronic personal dosimeter (EPD). The designed EPD consists of a 3 × 3 ㎟ PIN diode coupled to a 3 × 3 × 3 ㎣ CsI (Tl) scintillator block. The spectrum-to-dose conversion function (G(E)) for estimating H* (10) was calculated by applying the gradient-descent method based on the Monte-Carlo simulation. The optimal parameters for the G(E) were found and this conversion of the H* (10) from the gamma spectra was verified by using 241Am, 137Cs, 22Na, 54Mn, and 60Co radioisotopes. Furthermore, gamma spectra and H* (10) were obtained for an arbitrarily mixed multiple isotope case through Monte-Carlo simulation in order to expand the verification to more general cases. The H* (10) based on the G(E) function for the gamma spectra was then compared with H* (10) calculated by simulation. The relative difference of H* (10) from various single-source spectra was in the range of ±2.89%, and the relative difference of H* (10) for a multiple isotope case was in the range of ±5.56%.

Evaluation of Occupational, Facility and Environmental Radiological Data From the Centralized Radioactive Waste Management Facility in Accra, Ghana

  • Gustav Gbeddy;Yaw Adjei-Kyereme;Eric T. Glover;Eric Akortia;Paul Essel;Abdallah M.A. Dawood;Evans Ameho;Emmanuel Aberikae
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.371-381
    • /
    • 2023
  • Evaluating the effectiveness of the radiation protection measures deployed at the Centralized Radioactive Waste Management Facility in Ghana is pivotal to guaranteeing the safety of personnel, public and the environment, thus the need for this study. RadiagemTM 2000 was used in measuring the dose rate of the facility whilst the personal radiation exposure of the personnel from 2011 to 2022 was measured from the thermoluminescent dosimeter badges using Harshaw 6600 Plus Automated TLD Reader. The decay store containing scrap metals from dismantled disused sealed radioactive sources (DSRS), and low-level wastes measured the highest dose rate of 1.06 ± 0.92 µSv·h-1. The range of the mean annual average personnel dose equivalent is 0.41-2.07 mSv. The annual effective doses are below the ICRP limit of 20 mSv. From the multivariate principal component analysis biplot, all the personal dose equivalent formed a cluster, and the cluster is mostly influenced by the radiological data from the outer wall surface of the facility where no DSRS are stored. The personal dose equivalents are not primarily due to the radiation exposures of staff during operations with DSRS at the facility but can be attributed to environmental radiation, thus the current radiation protection measures at the Facility can be deemed as effective.

Organ dose reconstruction for the radiation epidemiological study of Korean radiation workers: The first dose evaluation for the Korean Radiation Worker Study (KRWS)

  • Tae-Eun Kwon;Areum Jeong;Wi-Ho Ha;Dalnim Lee;Songwon Seo;Junik Cho;Euidam Kim;Yoonsun Chung;Sunhoo Park
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.725-733
    • /
    • 2023
  • The Korea Institute of Radiological and Medical Sciences has started a radiation epidemiological study, titled "Korean Radiation Worker Study," to evaluate the health effects of occupational exposure to radiation. As a part of this study, we investigated the methodologies and results of reconstructing organ-specific absorbed doses based on personal dose equivalent, Hp(10), reported from 1984 to 2019 for 20,605 Korean radiation workers. For the organ dose reconstruction, representative exposure scenarios (i.e., radiation energy and exposure geometry) were first determined according to occupational groups, and dose coefficients for converting Hp(10) to organ absorbed doses were then appropriately taken based on the exposure scenarios. Individual annual doses and individual cumulative doses were reconstructed for 27 organs, and the highest values were observed in the thyroid doses (on average 0.77 mGy/y and 10.47 mGy, respectively). Mean values of individual cumulative absorbed doses for the red bone marrow, colon, and lungs were 7.83, 8.78, and 8.43 mSv, respectively. Most of the organ doses were maximum for industrial radiographers, followed by nuclear power plant workers, medical workers, and other facility workers. The organ dose database established in this study will be utilized for organ-specific risk estimation in the Korean Radiation Worker Study.

개인선량계 성능의 국내 상호비교 (Domestic Intercomparison Study for the Performance of Personnel Dosimeters)

  • 김장렬;장시영;김봉환
    • Journal of Radiation Protection and Research
    • /
    • 제21권3호
    • /
    • pp.147-153
    • /
    • 1996
  • 한국원자력연구소에서는 국내 개인선량계 판독기관들의 선량판독평가기술의 정밀 정확도 향상을 위한 국내 상호비교시험을 실시하였다. 본 시험에 참가한 기관은 모두 7개 기관으로 총 9종의 선량계(TLD 6종, 필름배지 3종)가 참가하였다. 사용된 방사선장은 Cs-137 감마, Sr/Y-90 베타 및 ISO의 wide series X-선장중 4종등 6개의 방사선장 이었으며, 참가기관당 30개의 선량계를 제출하여 각 시험조사당 4개씩 PMMA팬톰위에서 같은 선량이 조사되었다. 조사선량의 범위는 하한 ${\sim}10mSv$ 이하였다. 참가기관은 판독선량을 ICRU가 정한 개인선량당량 Hp(10) 및 Hp(0.07)로 평가하였다. 시험 결과 Cs-137 및 Sr/Y-90의 경우 1개 기관을 제외한 모든 기관의 판독선량과 부여선량의 비가 ${\pm}25%$ 이내에서 잘 일치하고 있었으나 X-선장의 경우, 모든 판독기관의 선량평가 알고리즘이 ANSI N13.11의 X-선장에 기초하여 개발되었기 때문에 판독선량과 부여선량의 편중이 ${\pm}35%$를 초과하는 경우들이 발견되었다.

  • PDF

중성자 개인선량계 상호비교 (Intercomparison Study of the Neutron Personnel Dosemeters)

  • 김봉환;김장렬;장시영
    • Journal of Radiation Protection and Research
    • /
    • 제23권1호
    • /
    • pp.49-57
    • /
    • 1998
  • 국내 최초로 중성자 개인선량계에 대한 상호비교측정시험이 수행되었다. 기준 방사선장으로 한국원자력연구소가 보유하고 있는 중수감속 $^{252}Cf$ 선원을 이용하였으며, 12개 판독기관의 선량계 13종이 상호비교시험에 참가하였다. 각 참가기관으로부터 컨트롤과 예비용을 포함하여 15개의 선량계를 제출받아, 이를 2개의 조사선량군으로 나누어 4개씩 총 8개의 선량계가 실제 조사되었다. 중성자, 감마 그리고 총선량의 항목으로 판독기관의 보고선량을 부여된 선량으로 나누어 선량계 판독결과를 비교한 결과, 각각에 대하여 그 비율이 $0.55{\sim}1.34$, $0.54{\sim}1.32$, $0.75{\sim}1.20$ 의 분포를 갖는 것으로 나타났다. 판독기관의 자체 판독능력을 기준으로 할 때 전혀 문제가 없는 것은 아니나, 현재의 상호비교시험 결과로부터 알 수 있는 것은 향후 중성자분야에 대한 개인선량계 성능시험이 시행될 경우, 판독기관들이 모두 합격범위에 들 가능성이 높은 것으로 평가되었다.

  • PDF

Calculation of X-ray spectra characteristics and kerma to personal dose equivalent Hp(10) conversion coefficients: Experimental approach and Monte Carlo modeling

  • Arectout, A.;Zidouh, I.;Sadeq, Y.;Azougagh, M.;Maroufi, B.;Chakir, E.;Boukhal, H.
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.301-309
    • /
    • 2022
  • This work aims to establish some X-ray qualities recommended by the International Standard Organization (ISO) using the half-value layer (HVL) and Hp(10) dosimetry approaches. The HVL values of the following qualities N-60, N-80, N-100, N-150 and N-250 were determined using various attenuation layers. The obtained results were compared to those of reference X-ray beam qualities and a good agreement was found (difference less than 5% for all qualities). The GAMOS (Geant4-based Architecture for Medicine-Oriented Simulations) radiation transport Monte Carlo toolkit was employed to simulate the production of X-ray spectra. The characteristics HVLs, mean energy and the spectral resolution of simulated spectra have been calculated and turned out to be conform to the ISO reference ones (difference less than the limit allowed by ISO). Furthermore, the conversion coefficients from air kerma to personal dose equivalent for simulated and measured spectra were fairly similar (the maximum difference less than 4.2%).

점선원 감마선장에서 유효선량의 성별차 및 개연선량당량과의 차이 (Effective Doses in the Radial Gamma Radiation Field near a Point Source: Gender Difference and Deviation from the Personal Dose Equivalent)

  • 장재권;이재기
    • Journal of Radiation Protection and Research
    • /
    • 제22권4호
    • /
    • pp.299-307
    • /
    • 1997
  • 점선원 주위에 형성되는 방사상의 감마선장에서 개인선량당량 $H_p$, 유효선량 E, 성별 유효선량 $E^m$$E^f$를 MIRD형 남녀 모의 피폭체를 이용하여 평가하였다. 선원은 신체의 전방 각각 15, 40 및 100 cm 거리의 여러 높이에 있는 것으로 하였고 방사성 핵종으로는 시범적으로 $^{137}Cs$$^{131}I$을 선정하였다. 성별 유효선량에서는 일부 예외적인 경우-예를 들면 선원이 생식선 앞에 위치할 때-를 제외하고는 대체로 여성의 경우가 크게 나타났으나, 남녀 평균값과의 차이는 크지않아 방사상 감마선장에서 성별 유효선량환산인자를 사용할 필요성은 없었다. 선량계를 가슴에서 하복부까지의 몸통 전방에 착용할 경우에는 $H_p$/E의 비가 약$1{\sim}3$의 범위에 있었고 극단적인 경우는 0.34에서 6.5까지 큰 편차를 보였다. 그러나 일반적인 방사선원 취급방법과 선량계 착용위치(흉곽 전방)를 가정하고, 선량계가 넓고 평행한 방사선장에서 유효선량에 대해 교정된다면 평행하지는 않지만 넓은 빔인 방사상 감마선장에 대해서는 용인할 수 있는 오차의 범위에서 유효선량 평가치를 제공할 수 있을 것으로 나타났다.

  • PDF

소음측정방법에 따른 평가소음도 비교 (A Comparison of Noise Level by Noise Measuring Methods)

  • 심철구;노재훈;박정균
    • 한국산업보건학회지
    • /
    • 제5권2호
    • /
    • pp.128-136
    • /
    • 1995
  • The purpose of this study is to evaluate the difference of noise level according to noise measuring methods in the noisy working environments. Sound pressure level(SPL), equivalence sound level(Leq) and personal noise exposure dose(Dose) in the fifty-nine unit workplaces of the twenty-eight industries were measured and relating factors which were affected noise level were investigated. The results were as follows ; 1. The noise levels were $88.70{\pm}5.68dB(A)$ by SPL, $89.07{\pm}5.41dB(A)$ by Leq and $89.07{\pm}5.69$ by Dose. The differences of noise levels by three measuring methods were statistically significant(P<0.001) by repeated measure ANOV A. 2. Comparing with noise levels by general classes of noise exposure, noise levels of continuous noise were $89.14{\pm}5.19dB(A)$ by SPL, $89.45{\pm}4.65dB(A)$ by Leq and $90.04{\pm}5.09$ by Dose. Noise levels of intermittent noise were $87.90{\pm}6.52dB(A)$ by SPL, $88.40{\pm}6.63dB(A)$ by Leq and $90.10{\pm}6.80$ by Dose. The differences noise level of noise measuring methods by general classese of noise exposure were statistically not significant by repeated measure ANOV A. 3. Interaction between general classese of noise exposure and noise measuring methods for noise level was not statistically significant by repeated measure ANOVA. And the noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001) 4. Comparing with noise levels by unit workplace size, noise levels of large unit workplace were $90.73{\pm}5.87dB(A)$ by SPL, $91.32{\pm}5.50dB(A)$ by Leq and $91.82{\pm}6.06$ by Dose and noise levels of middle unit workplace were $88.31{\pm}5.26dB(A)$ by SPL, $88.41{\pm}4.83dB(A)$ by Leq and $89.69{\pm}5.05$ by Dose. And noise levels of small unit workplace were $94.89{\pm}4.10dB(A)$ by SPL, $85.35{\pm}4.11dB(A)$ by Leq and $86.87{\pm}4.98$ by Dose. The noise level differences of noise measuring methods by unit workplace size were statistically significant by repeated measure ANOV A(P<.05). 5. The noise level by noise measuring methods were statistically significant by repeated measure ANOV A(P<.001). But Interaction between workplace size and noise level measuring methods for noise level was not statistically significant by repeated measure ANOVA. According to the above results, there was a difference of the noise level among the three measuring methods. Therefore we must use the personal noise exposure dose using by noise dose meter, possible, to prvent occupational hearing loss in noisy working environment.

  • PDF