• Title/Summary/Keyword: perpendicular to the grain

Search Result 110, Processing Time 0.023 seconds

Bearing Properties of Domestic Larix Glulam (국내산 낙엽송집성재의 지압특성)

  • Kim, Keon-Ho;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.93-101
    • /
    • 2008
  • Bearing strength test was investigated to determine the bearing properties of domestic larix glulam according to the load direction (in parallel to grain and in perpendicular to grain), the fastener (bolt and drift-pin), and the direction of laminae. The specimen was 5 ply glulam. The diameters of fastener are 12, 16 and 20 mm. The results were as follows. 1) In according to the diameter of bolt and drift-pin, the average of maximum bearing strength in parallel to grain loading was similar to that in perpendicular to grain loading. The average of maximum bearing strength was 1.50~2.31 times higher in parallel to grain loading than in perpendicular to grain loading. The average of maximum bearing strength in parallel to grain loading was lowered by 20% with increasing the diameter from 16 mm to 20 mm, but that in perpendicular to grain loading didn't show a clear tendency. 2) The average of bearing stiffness in parallel to grain loading was the highest at 16 mm in diameter. The average of bearing stiffness is similar to the shearing stiffness in drift-pin connection with increasing diameter. 3) In parallel to grain loading, the failure mode of specimens was the splitting along the grain in decreasing diameter. The failure mode in perpendicular to grain loading was the splitting along the grain. In this case, split occured more in specimens using bolt than in those using drift-pin. 4) The 5% offset yield strength in parallel to grain loading was similar to the predicted bearing strength of KBCS, NDS. In perpendicular to grain loading, the NDS's equation can be applied to predict the bearing strength.

Engineering Properties of Some Sedimentary Rocks from the Gyeongsang Supergroup (경상계(慶尙系) 퇴적암(堆積岩)의 공학적(工學的) 성질(性質)에 관(關)한 연구(硏究))

  • So, Chil-Sup;Choi, Byoung-Ryol
    • Economic and Environmental Geology
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 1975
  • The engineering properties of some Gyeongsang sedimentary rocks with respect to the grain size and the orientation of bedding planes were studied. The suitability of the rocks for civil and architectural construction was also investigated. The porosity of the rocks increases in proportion to the grain size. The ratio of the strain due to stress perpendicular to the bedding planes to the strain resulting from stress parallel to the bedding planes increases as the grain size decreases. The study indicates however, that the ratio of Young's modulus due to stress perpendicular to the bedding planes to Young's modulus resulting from stress parallel to the bedding planes increases in proportion to the grain size. The compressive strength of the sandstones studied is much greater than the strength of the conglomerate or shale. Only the coarse grained sandstone can be used for civil and architectural construction, regardless of the orientation of bedding planes. The relationships between compressive strength and density, elasticity and porosity, and compressive strength and mineral content were also studied.

  • PDF

Shear Strength of Nailed Connection of Domestic Plywood as a Substitute for OSB (OSB 대체용 국내산 합판의 못 접합부 전단내력 성능)

  • Suh, Jin-Suk;Hwang, Sung-Wook;Hwang, Kweon-Hwan;Jeong, Gi-Young;Joung, Ha-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.287-293
    • /
    • 2012
  • This study was carried out in order to compare nail shear strength between domestic plywood and imported OSB for structural sheathing members as infill wall of wooden construction. The differences of nail shear strength between parallel-to-grain direction and perpendicular-to-grain direction of sheathing material to frame material were distinct at the plywood composition. The shear strengths of plywood and OSB with nail met current design values. The plywood of P-4 type, which uses MLH at surface layer and constructs 7 ply, showed greater than OSB regardless of grain direction of sheathing material to frame material. When the plywood as sheathing material to frame material was used, it was found out that the overall construction of perpendicular-to-grain direction of plywood had greater nail shear strengths than the construction of parallel-to-grain.

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Effects of Density, Temperature, Size, Grain Angle of Wood Materials on Nondestructive Moisture Meters

  • Pang, Sung-Jun;Jeong, Gi Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.40-50
    • /
    • 2019
  • The aim of this study was to investigate the effects of density, temperature, size, and grain direction on measurement of moisture contents (MC) of wood materials non-destructively. The MC of different sizes of solid wood, glulam, and CLT from larch (larix kaempferi, $560kg/m^3$) and pine (pinus koraiensis, $430kg/m^3$) were measured using the dielectric type and resistance type meters. The specimens were conditioned in the environmental chamber to be equilibrium moisture content (EMC) of 12 % and 19 %. When density setting in dielectric type meter was increased from $400kg/m^3$ to $600kg/m^3$, the MCs of specimen (S-L-100-E) were decreased from 13.4 % to 11.3 %. However, when wood group (WG) setting in resistance type meter was changed from WG1 to WG4, the measured MCs were increased from 9.2 % to 12.3 %. When temperature setting in resistance type meters was changed from 0 to $35^{\circ}C$, the MC was decreased from 17.0 % to 13.0 %. The MCs measured by dielectric type meter for larger specimens (S-L-100-E_11.3 %, G-L-240-E_11.7 % and C-L-120-E_12.8 %) were higher than those of small size specimens (S-L-30-E_8.7 %, G-L-150-E_10.3 %, and C-L-90-E_9.7 %). The MCs measured by resistance type meter for larger specimens (G-L-240-E_11.6 % and C-L-120-E_13.3 %) were also higher than those of small size specimens (G-L-150-E_10.4 %, and C-L-90-E_11.8 %). The resistance type meter was not affected by the grain direction but the dielectric type meter were affected by the grain direction. The MC measured by resistance type meter for G-L-120-E perpendicular to grain direction was 11.5 % and the measured MC parallel to grain direction was 11.3 %. The MC measured by dielectric type meter parallel to grain direction (12.1 %) was higher than that measured perpendicular to grain direction (10.7 %).

Bending Performances of Radiata Pine Veneers and Phenol Resin-Impregnated Sheet Overlaid Plywoods by Nondestructive Evaluation (비파괴평가에 의한 라디에타소나무 단판 및 수지함침시트 표면적층 합판의 휨성능)

  • Suh, Jin-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.87-96
    • /
    • 1998
  • The bending performances were evaluated at the radiata pine plywood through veneer compositions encompassing veneer quality, ply-numbers and overlays of the high density- or medium density-phenol resin impregnated sheets (hereafter abbreviated as resin sheets) on the raw plywood. In addition, a prediction on the bending MOE of veneers and plywoods was carried out by the nondestructive testing with stresswave timer. The summarized results were as follows: I. Bending strength and bending MOE of resin sheets-overlaid plywoods in parallel surface grain direction through 5 and 7ply were increased by 13 to 45% and 17 to 34%, respectively. Resin sheets-overlay occurred an increasing effect of the strength efficiency i.e. strength perpendicular-to-grain direction versus that parallel-to-grain direction, showing the phenomenon that the plywood strength becomes greater at the perpendicular-to-grain direction of 7ply than at that of 5ply. Displacement at bending failure had a greater trend at 7ply than at 5ply, and was decreased by resin sheets-overlay. 2. After the nondestructive bending MOEs were measured for individual veneers, these veneers were rearranged in plywood-manufacture. In these plywoods, including resin sheets-overlay, the actual MOE was predictable with feasibility of $R^2$=0.53, and also the nondestructively-evaluated MOE was lower by 20% in raw plywood, and higher 20% in LVL than actual bending MOEs.

  • PDF

Magnetic Property Evolution of Co-22%Cr Alloy Thin Films with Self-Organized Nano Structure Formation (Co-22%Cr 합금박막의 자가정렬형 나노구조에 의한 자기적 물성)

  • Song, O-Seong;Lee, Yeong-Min
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1042-1046
    • /
    • 2001
  • Co-22%Cr alloy films are promising for high-density perpendicular magnetic recording media with their perpendicular anisotropy and large coercivity of 3000 Oe. We observed that a self organized nano structure(SONS) of fine ferromagnetic Co-enriched phase and paramagnetic Cr-enriched phase appears inside the grain of Co-Cr magnetic alloy thin films at the elevated substrate temperature after do-sputtering. We prepared 1000 $\AA$-thick Co-22%Cr films on 2000 $\AA$- SiO$_2$/Si(100) substrates at the deposition rate of 100 $\AA$/min with substrate temperatures of 3$0^{\circ}C$, 10$0^{\circ}C$, 15$0^{\circ}C$, 20$0^{\circ}C$, 30$0^{\circ}C$, and 40$0^{\circ}C$, respectively. We employed a vibrating sample magnetometer(VSM) to measure the B-H loops showing the saturation magnetifation, coercivity, remanence in in- plane and out- of- plane modes. In- plane coercivity, perpendicular coercivity, and perpendicular remanence increased as substrate temperature increased, how-ever they decreased after 30$0^{\circ}C$ slowly. Transmission electron microscope (TEM) characterization revealed that the self organized nano structure (SONS) appears at the elevated substrate temperature, which forms fine Co-enriched phases inside a grain, then it eventually affect the perpendicular magnetic property. Our results imply that we may tune the perpendicular magnetic properties with SONS obtained at appropriate substrate temperature.

  • PDF

Effect of Drift Pin Arrangement for Strength Property of Glulam Connections (드리프트 핀의 배열 형태가 집성재 접합부의 회전 거동 및 강도 성능에 미치는 영향)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.10-21
    • /
    • 2007
  • It is necessary to study about moment performance of glulam-dowel connections which had been applied rotation. To analyze and predict the moment performance, angled to grain load was replaced with parallel to grain load and perpendicular to grain load. The dowel bending strength and dowel bearing strength were tested. And tensile strength test for connections of two different end distances was performed. Specimens of rotation test were composed with different drift pin numbers and drift pin arrangement. Connection deformation was occurred by plastic behavior of drift pin after yield when tensile load applied at connection. And the absorbing drift pin deflection by end distance continued the connection deformation. When rotation applied at connection that 2 drift pins were arranged parallel to grain (b2h), it showed similar performance with tensile perpendicular to grain. And connection that 2 drift pins were arranged perpendicular to grain (b2v) showed similar performance with tensile parallel to grain. Connection capacity that 4 drift pins were arranged rectangular (b4) showed 1.7 times as strong as connection that 2 drift pins were arranged parallel to grain (b2h). These results agreed predicted values and it is available that rotation replaced with tensile load.

Studies on Evaluation for Long-term Loading of Composite Wood-joint and Characteristics of Joint Strength (I) - The strength properties of mechanical joints of Pinus densiflora with drift pin and bolt - (목재 접합부의 강도특성 및 장기 내력 평가 (I) - 소나무재의 Bo1t 및 Drift pin 접합부 능력(耐力) 성능 평가 -)

  • Hong, Soon-Il;Hwang, Won-Jung;Kim, Eun-Sam;Jin, Kwang-Sung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.1-8
    • /
    • 2001
  • This study was carried out to investigate the strength and stiffness of drift pinned and bolted joints with steel-plates by the tension-type lateral strength tests. Specimens were solid wood of Pinus densiflora. Bolt and drift pin were jointed with inserted steel plates. Tests were conducted with combinations of two loading directions (parallel to the grain : 0 degree, perpendicular to the grain : 90 degree) and three diameters of fasteners (d = 6 mm, 10 mm, 12 mm). The results obtained were as follow: 1. In the test of the parallel to the grain, maximum loads were increased with increasing of the diameter of bolt and drift pin in the same end distance. In the test of perpendicular to the grain with diameter 10 mm and 12 mm, specimens mostly were failed with horizontal splits in woods reaching the yield load of drift pinned and bolted joints. 2. The ratio of maximum load to the yield load determined by the so-called "5% offset method", was great in bolted joints in the parallel to the grain This trend become more remarkable as the slenderness ratio was increased. 3. The calculated yield strength was agreed well with the experimental results of drift pinned joint(0 degree).

  • PDF

Evaluation of the Partial Compressive Strength according to the Wood Grain Direction

  • Park, Chun-Young;Kim, Hyung-Kun;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.100-104
    • /
    • 2013
  • Bearing occurs by the rotations of members induced from horizontal or vertical load at traditional wooden joint in frame. The bearing between wooden members is not occurring at the whole surface of joint, but occurring only at the particular bearing area. In this study, partial bearing according to the different grain direction was evaluated. The partial compressive strength showed 3 times higher than pure compressive strength perpendicular to grain, 1.5 times higher than parallel to grain and 3.3 times higher than both of them. It is expected that this result can be very importantly applied when evaluating and analyzing the actual behavior of traditional wooden mortise and tenon joint.