• Title/Summary/Keyword: peroxisome

검색결과 554건 처리시간 0.018초

Signal crosstalk between estrogen and peroxisome proliferator-activated receptor α on adiposity

  • Kim, Bang-Hyun;Won, Young-Suk;Kim, Dae-Yong;Kim, Bora;Kim, Eun-Young;Yoon, Mi-Jung;Oh, Goo-Taeg
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.91-95
    • /
    • 2009
  • Peroxisome proliferator-activated receptor $\alpha$ and estrogen are believed to be involved in metabolic changes leading to obesity. To test this relationship, we divided female wildtype and PPAR$\alpha$-deficient mice fed on a high fat diet into the following groups: mock-operated, ovariectomized (OVX), and $E_2$-treated. The visceral white adipose tissue and plasma cholesterol levels were increased significantly in wild type OVX and decreased in the $E_2$-treated group, but interestingly not in PPAR$\alpha$-deficient mice. The mRNA levels of lipoprotein lipase in adipose tissue were also increased in only wild type OVX and decreased significantly in $E_2$-treated mice. These novel results suggest the possibility of signaling crosstalk between PPAR$\alpha$ and $E_2$, causing obesity in vivo.

Peroxisome Proliferator-activated Receptor-γ Gene Polymorphisms are not associated with Osteonecrosis of the Femoral Head in the Korean Population

  • Kim, Tae-Ho;Hong, Jung Min;Park, Eui Kyun;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.388-393
    • /
    • 2007
  • Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-${\gamma}$ ($PPAR{\gamma}$) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between $PPAR{\gamma}$ gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the $PPAR{\gamma}$ gene are unlikely to be associated with susceptibility to ONFH.

Binding Model of Amentoflavone to Peroxisome Proliferator-Activated Receptor γ

  • Lee, Jee-Young;Kim, Jin-Kyoung;Lee, So-Jung;Lee, Eun-Jung;Shin, So-Young;Jin, Qinglong;Yoon, Do-Young;Woo, Eun-Rhan;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1475-1479
    • /
    • 2012
  • Human peroxisome proliferator-activated receptor gamma ($hPPAR{\gamma}$) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. In this study, we verified that amentoflavone is an agonist of $hPPAR{\gamma}$ and probed the molecular basis of its action. It was demonstrated that amentoflavone bound $hPPAR{\gamma}$ with high (picomolar) affinity and increased the binding between $hPPAR{\gamma}$ and steroid receptor coactivator-1 (SRC-1) by approximately 4-fold. Based on a docking study, for the first time, we propose a model of amentoflavone and $hPPAR{\gamma}$ binding in which amentoflavone forms three hydrogen bonds with the side chains of His323, Tyr327, and Arg280 in $hPPAR{\gamma}$ and participates in two hydrophobic interactions.

Two Synthetic Ligands for Peroxisome Proliferator- Activated Receptor $\gamma$

  • Kim, Min-A;Jeong, Sun-Hyo;Song, Yang-Heon;Kim, Dae-Il;Yoon, Mi-Chung
    • 대한의생명과학회지
    • /
    • 제10권2호
    • /
    • pp.137-142
    • /
    • 2004
  • The peroxisome proliferator-activated receptor $\gamma$ (PPAR${\gamma}$) is the molecular target for a class of drugs, the antidiabetic thiazolidnediones (TZDs). The heterodimer of PPAR${\gamma}$ with retinoid X receptor (RXR) plays a central role in the regulation of adipogenesis and insulin sensitization. We synthesized two chemicals, DANA87 and DANA88, sharing structural characteristics with TZDs. Given this structural similarity, it was hypothesized that DANA87 and DANA88 may act as PPAR$\gamma$ ligands. In transient transfection assays, DANA87 and DANA88 caused slight increases in the endogenous expression of a luciferase reporter gene containing the PPAR responsive element in 3T3-L1 preadipocytes. However, DANA87 and DANA88 significantly inhibited troglitazone-induced reporter gene activation when cells were treated with a combination of DANA87 or DANA 88 and troglitazone, one of the TZDs that activate PPAR$\gamma$. These results suggest that DANA87 and DANA88 are not only weak agonists of PPAR${\gamma}$ transactivation, but also competitively antagonize troglitazone-induced PPAR$\gamma$ reporter activity.

  • PDF

Effects of Fenofibrate on Adipogenesis in Female C57BL/6J Mice

  • Jeong Sunhyo;Choi Won Chang;Yoon Michung
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Fibrates are a class of hypolipidemic agents whose effects are mediated by activation of a specific transcription factor called the peroxisome proliferator-activated receptor $\alpha\;(PPAR\alpha).\;PPAR\alpha$ regulates the pathways of lipid catabolism such as fatty acid oxidation and the triglyceride metabolism, resulting in the treatment of hyperlipidemia. The decreased levels of plasma triglycerides by fibrates are responsible for hypertrophy and hyperpalsia of adipose cells. To determine whether fenofibrate regulates adipogenesis in female C57BL/6J mice, we measured the effects of fenofibrate on not only body weight, adipose tissue mass and serum triglycerides, but also the histology of adipose tissue and the expression of adipocyte marker genes. Fenofibrate did not inhibit high fat diet-induced increases in body weight, adipose tissue mass and serum triglycerides. Furthermore, fenofibrate did not cause the changes in the size and number of adipocytes and the expression of adipocyte-specific genes such as leptin and $TNF\alpha$. Therefore, this study demonstrates that fenofibrate does not affect adipogenesis in female mice.

  • PDF

Pexophagy: Molecular Mechanisms and Implications for Health and Diseases

  • Cho, Dong-Hyung;Kim, Yi Sak;Jo, Doo Sin;Choe, Seong-Kyu;Jo, Eun-Kyeong
    • Molecules and Cells
    • /
    • 제41권1호
    • /
    • pp.55-64
    • /
    • 2018
  • Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.

Satellite Cells Isolated from Adult Hanwoo Muscle Can Proliferate and Differentiate into Myoblasts and Adipose-like Cells

  • Kook, Sung-Ho;Choi, Ki-Choon;Son, Young-Ok;Lee, Kyung-Yeol;Hwang, In-Ho;Lee, Hyun-Jeong;Chang, Jong-Soo;Choi, In-Ho;Lee, Jeong-Chae
    • Molecules and Cells
    • /
    • 제22권2호
    • /
    • pp.239-245
    • /
    • 2006
  • This study examined whether adult bovine muscle satellite cells from 30-month-old Hanwoo cattle are multipotential. The satellite cells were found to have the potential to proliferate and differentiate into myoblasts with the formation of multinucleated cells. In addition, treatment with the peroxisome proliferator activating receptor-${\gamma}$ ($PPAR{\gamma}$) agonist, rosiglitazone, promoted their trans-differentiation into adipocytes with significant increases in glycerol accumulation and glycerol-3-phosphate dehydrogenase activity. Western blot analysis revealed that increased levels of the adipocyte fatty acid-binding protein, $PPAR{\gamma}$ and of CCAAT/enhancerbinding protein were closely related to rosiglitazoneinduced differentiation of the cells. These findings demonstrate that satellite cells from adult Hanwoo cattle are multipotent, and that their trans-differentiation into adipocytes can be induced by rosiglitazone.

부자추출물의 골격근 세포에서의 에너지 조절 작용 (Effect of Aconitum carmichaeli Debx on Energy Metabolism in C2C12 Skeletal Muscle Cells)

  • 송미영
    • 한방비만학회지
    • /
    • 제16권2호
    • /
    • pp.109-115
    • /
    • 2016
  • Objectives: The all anti-obesity drugs currently approved by the US Food and Drug Administration work by reducing energy intake. In fact, no approved drug targets energy expenditure. In Korean medicine, it is known to Qi or Yang invigorating therapy could increase energy metabolism. Aconitum carmichaeli Debx (ACD) is a Yang invigorating herb, often used for treat obesity in Korean medicine. In the present study, the authors investigated the regulatory effects of ACD in energy metabolism and mitochondrial biogenesis in C2C12 skeletal muscle cells. Methods: The water extract of ACD (0.2, 0.5 and 1.0 mg/ml) were treated in differentiated C2C12 cells. The protein or mRNA levels of target genes were analyzed and mitochondrial mass were investigated. Results: ACD activated the expressions of peroxisome proliferator-activated receptor gamma coactivator 1-alpha ($PGC-1{\alpha}$), nuclear respiratory factor 1 and TFAM and increased mitochondrial mass. ACD also increased adenosin monophosphate-activated protein kinase (AMPK), and acetyl-CoA carboxylase. Conclusions: This study suggests that ACD has the potential to increase energy metabolism and mitochondrial biogenesis by activating AMPK and $PGC1{\alpha}$.

PPARγ Physiology and Pathology in Gastrointestinal Epithelial Cells

  • Thompson, E. Aubrey
    • Molecules and Cells
    • /
    • 제24권2호
    • /
    • pp.167-176
    • /
    • 2007
  • Peroxisome proliferator-activated receptor-gamma ($PPAR{\gamma}$) is expressed at very high levels in the gastrointestinal epithelium. Many of the functions of $PPAR{\gamma}$ in gastrointestinal epithelial cells have been elucidated in recent years, and a pattern is emerging which suggests that this receptor plays an important role in gastrointestinal physiology. There is also strong evidence that $PPAR{\gamma}$ is a colon cancer suppressor in pre-clinical rodent models of sporadic colon cancer, and there is considerable interest in exploitation of $PPAR{\gamma}$ agonists as prophylactic or chemopreventive agents in colon cancer. Studies in mice and in human colon cancer cell lines suggest several mechanisms that might account for the tumor suppressive effects of $PPAR{\gamma}$ agonists, although it is not in all cases clear whether these effects are altogether mediated by $PPAR{\gamma}$. Conversely, several reports suggest that $PPAR{\gamma}$ agonists may promote colon cancer under certain circumstances. This possibility warrants considerable attention since several million individuals with type II diabetes are currently taking $PPAR{\gamma}$ agonists. This review will focus on recent data related to four critical questions: what is the physiological function of $PPAR{\gamma}$ in gastrointestinal epithelial cells; how does $PPAR{\gamma}$ suppress colon carcinogenesis; is $PPAR{\gamma}$ a tumor promoter; and what is the future of $PPAR{\gamma}$ in colon cancer prevention?

3T3-L1 지방세포에서 초과 에탄올 추출물의 항비만 효과 (Anti-obesity effect of Amomum taso-ko ethanol extract in 3T3-L1 adipocytes)

  • 이정아;박영진;정원식;홍성수;안은경
    • Journal of Applied Biological Chemistry
    • /
    • 제60권1호
    • /
    • pp.23-28
    • /
    • 2017
  • 본 연구에서는 초과 에탄올 추출물을 이용하여 3T3-L1 지방전구세포에서 지방세포로의 분화 연구를 통해 항비만 활성을 확인하고자 하였다. 초과 에탄올 추출물에 의한 지방세포 분화 억제 활성 및 지방형성에 미치는 영향을 확인하기 위해 3T3-L1 지방전구세포에 분화를 유도하면서 추출물을 농도별로 처리하였고, 그 결과 초과 에탄올 추출물은 3T3-L1 지방전구세포에서 지방세포로의 분화를 농도에 의존적으로 감소시켰다. 이 같은 활성에 대한 작용기전을 알아보기 위해 지방세포 분화에 중요한 역할을 담당하고 있는 peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$)와 CCAAT-enhancer-binding protein ${\alpha}$ ($C/EBP{\alpha}$), 그리고 지방세포 분화에 관여하는 유전자들의 활성을 확인해 보았다. 실험 결과 초과 에탄올 추출물은 $PPAR{\gamma}$$C/EBP{\alpha}$의 유전자 및 단백질 발현을 유의적으로 감소시켰고 지방세포 분화에 관여하는 adipogenesis marker 유전자들의 발현을 억제 시켰다. 따라서 초과 에탄올 추출물은 지방분화 및 adipogenesis 억제 활성을 통해 항비만 소재로의 가능성이 있을 것으로 기대한다.