Browse > Article
http://dx.doi.org/10.14348/molcells.2018.2245

Pexophagy: Molecular Mechanisms and Implications for Health and Diseases  

Cho, Dong-Hyung (Graduate School of East-West Medical Science, Kyung Hee University)
Kim, Yi Sak (Department of Microbiology, Chungnam National University School of Medicine)
Jo, Doo Sin (Graduate School of East-West Medical Science, Kyung Hee University)
Choe, Seong-Kyu (Department of Microbiology and Center for Metabolic Function Regulation, Wonkwang University School of Medicine)
Jo, Eun-Kyeong (Department of Microbiology, Chungnam National University School of Medicine)
Abstract
Autophagy is an intracellular degradation pathway for large protein aggregates and damaged organelles. Recent studies have indicated that autophagy targets cargoes through a selective degradation pathway called selective autophagy. Peroxisomes are dynamic organelles that are crucial for health and development. Pexophagy is selective autophagy that targets peroxisomes and is essential for the maintenance of homeostasis of peroxisomes, which is necessary in the prevention of various peroxisome-related disorders. However, the mechanisms by which pexophagy is regulated and the key players that induce and modulate pexophagy are largely unknown. In this review, we focus on our current understanding of how pexophagy is induced and regulated, and the selective adaptors involved in mediating pexophagy. Furthermore, we discuss current findings on the roles of pexophagy in physiological and pathological responses, which provide insight into the clinical relevance of pexophagy regulation. Understanding how pexophagy interacts with various biological functions will provide fundamental insights into the function of pexophagy and facilitate the development of novel therapeutics against peroxisomal dysfunction-related diseases.
Keywords
pexophagy; peroxisomal disorder; peroxisomal protein; peroxisome; selective autophagy receptor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Warren, D.S., Morrell, J.C., Moser, H.W., Valle, D., and Gould, S.J. (1998). Identification of PEX10, the gene defective in complementation group 7 of the peroxisome-biogenesis disorders. Am. J. Hum. Genet. 63, 347-359.   DOI
2 Waterham, H.R., Ferdinandusse, S., and Wanders, R.J. (2016). Human disorders of peroxisome metabolism and biogenesis. Biochim. Biophys. Acta 1863, 922-933.   DOI
3 Al-Dirbashi, O.Y., Shaheen, R., Al-Sayed, M., Al-Dosari, M., Makhseed, N., Abu Safieh, L., Santa, T., Meyer, B.F., Shimozawa, N., and Alkuraya, F.S. (2009). Zellweger syndrome caused by PEX13 deficiency: report of two novel mutations. Am. J. Med. Genet. A 149A, 1219-1223.   DOI
4 Anding, A.L., and Baehrecke, E.H. (2017). Cleaning House: Selective Autophagy of Organelles. Dev. Cell 41, 10-22.   DOI
5 Moser, A.E., Singh, I., Brown, F.R. 3rd., Solish, G.I., Kelley, R.I., Benke, P.J., Moser, H.W. (1984). The cerebrohepatorenal (Zellweger) syndrome. Increased levels and impaired degradation of very-longchain fatty acids and their use in prenatal diagnosis. N Engl J Med 310, 1141-1146.   DOI
6 Matsumoto, N., Tamura, S., Furuki, S., Miyata, N., Moser, A., Shimozawa, N., Moser, H.W., Suzuki, Y., Kondo, N., and Fujiki, Y. (2003). Mutations in novel peroxin gene PEX26 that cause peroxisome-biogenesis disorders of complementation group 8 provide a genotype-phenotype correlation. Am. J. Hum. Genet. 73, 233-246.   DOI
7 Matsuzono, Y., Kinoshita, N., Tamura, S., Shimozawa, N., Hamasaki, M., Ghaedi, K., Wanders, R.J., Suzuki, Y., Kondo, N., and Fujiki, Y. (1999). Human PEX19: cDNA cloning by functional complementation, mutation analysis in a patient with Zellweger syndrome, and potential role in peroxisomal membrane assembly. Proc. Natl. Acad. Sci. USA 96, 2116-2121.   DOI
8 Mayerhofer, P.U. (2016). Targeting and insertion of peroxisomal membrane proteins: ER trafficking versus direct delivery to peroxisomes. Biochim. Biophys. Acta 1863, 870-880.   DOI
9 Muntau, A.C., Mayerhofer, P.U., Paton, B.C., Kammerer, S., and Roscher, A.A. (2000). Defective peroxisome membrane synthesis due to mutations in human PEX3 causes Zellweger syndrome, complementation group G. Am. J. Hum. Genet. 67, 967-975.   DOI
10 Nazarko, T.Y. (2014). Atg37 regulates the assembly of the pexophagic receptor protein complex. Autophagy 10, 1348-1349.   DOI
11 Nazarko, T.Y. (2017). Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy 13, 991-994.   DOI
12 Zellweger, H., Maertens, P., Superneau, D., and Wertelecki, W. (1988). History of the cerebrohepatorenal syndrome of Zellweger and other peroxisomal disorders. South Med. J. 81, 357-364.   DOI
13 Wong, Y.C. and Holzbaur, E.L. (2014). Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. USA 111, E4439-4448.   DOI
14 Yamashita, S., Abe, K., Tatemichi, Y., and Fujiki, Y. (2014). The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 10, 1549-1564.   DOI
15 Yik, W.Y., Steinberg, S.J., Moser, A.B., Moser, H.W., and Hacia, J.G. (2009). Identification of novel mutations and sequence variation in the Zellweger syndrome spectrum of peroxisome biogenesis disorders. Hum. Mutat. 30, E467-480.   DOI
16 Zhang, Z., Suzuki, Y., Shimozawa, N., Fukuda, S., Imamura, A., Tsukamoto, T., Osumi, T., Fujiki, Y., Orii, T., Wanders, R.J., et al. (1999). Genomic structure and identification of 11 novel mutations of the PEX6 (peroxisome assembly factor-2) gene in patients with peroxisome biogenesis disorders. Hum. Mutat. 13, 487-496.   DOI
17 Zhang, J., Tripathi, D.N., Jing, J., Alexander, A., Kim, J., Powell, R.T., Dere, R., Tait-Mulder, J., Lee, J.H., Paull, T.T., et al. (2015). ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 17, 1259-1269.   DOI
18 Bonekamp,N.A., Volkl,A., Fahimi, H.D., and Schrader, M. (2009). Reactive oxygen species and peroxisomes: struggling for balance. Biofactors 35, 346-355.   DOI
19 Baroy, T., Koster, J., Stromme, P., Ebberink, M.S., Misceo, D., Ferdinandusse, S., Holmgren, A., Hughes, T., Merckoll, E., Westvik, J., et al. (2015). A novel type of rhizomelic chondrodysplasia punctata, RCDP5, is caused by loss of the PEX5 long isoform. Hum. Mol. Genet. 24, 5845-5854.   DOI
20 Bjorkoy, G., Lamark, T., Brech, A., Outzen, H., Perander, M., Overvatn, A., Stenmark, H., and Johansen, T. (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol. 171, 603-614.   DOI
21 Bowers, W.E. (1998). Christian de Duve and the discovery of lysosomes and peroxisomes. Trends Cell Biol 8, 330-333.   DOI
22 Braverman, N., Steel, G., Obie, C., Moser, A., Moser, H., Gould, S.J., and Valle, D. (1997). Human PEX7 encodes the peroxisomal PTS2 receptor and is responsible for rhizomelic chondrodysplasia punctata. Nat. Genet. 15, 369-376.   DOI
23 Braverman, N.E., D'Agostino, M.D., and Maclean, G.E. (2013). Peroxisome biogenesis disorders: Biological, clinical and pathophysiological perspectives. Dev. Disabil Res. Rev. 17, 187-196.   DOI
24 Poirier, Y., Antonenkov, V.D., Glumoff, T., and Hiltunen, J.K. (2006). Peroxisomal beta-oxidation--a metabolic pathway with multiple functions. Biochim. Biophys. Acta 1763, 1413-1426   DOI
25 Nordgren, M., Francisco, T., Lismont, C., Hennebel, L., Brees, C., Wang, B., Van Veldhoven, P.P., Azevedo, J.E., and Fransen, M. (2015). Export-deficient monoubiquitinated PEX5 triggers peroxisome removal in SV40 large T antigen-transformed mouse embryonic fibroblasts. Autophagy 11, 1326-1340.   DOI
26 Pawlak, M., Lefebvre, P., and Staels, B. (2015). Molecular mechanism of $PPAR{\alpha}$ action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J. Hepatol. 62, 720-733   DOI
27 Platta, H.W., Hagen, S., Reidick, C., and Erdmann, R. (2014). The peroxisomal receptor dislocation pathway: to the exportomer and beyond. Biochimie 98, 16-28.   DOI
28 Rakhshandehroo, M., Hooiveld, G., Muller, M., and Kersten, S. (2009). Comparative analysis of gene regulation by the transcription factor PPARalpha between mouse and human. PLoS One 4, e6796.   DOI
29 Reuber, B.E., Germain-Lee, E., Collins, C.S., Morrell, J.C., Ameritunga, R., Moser, H.W., Valle, D., and Gould, S.J. (1997). Mutations in PEX1 are the most common cause of peroxisome biogenesis disorders. Nat. Genet. 17, 445-448.   DOI
30 Campbell, I.G., Nicolai, H.M., Foulkes, W.D., Senger, G., Stamp, G.W., Allan, G., Boyer, C., Jones, K., Bast, R.C. Jr., and Solomon, E. (1994). A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum. Mol. Genet. 3, 589-594.   DOI
31 Chang, C.C., Lee, W.H., Moser, H., Valle, D., and Gould, S.J. (1997). Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Nat. Genet. 15, 385-388.   DOI
32 Choi, M., Kipps, T., and Kurzrock, R. (2016). ATM mutations in cancer: therapeutic implications. Mol. Cancer Ther. 15, 1781-1791.   DOI
33 Demarquoy, J., and Le Borgne, F. (2015). Crosstalk between mitochondria and peroxisomes. World J. Biol. Chem. 26, 301-309.
34 Ryter, S.W., Cloonan, S.M. and Choi, A.M. (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol. Cells 36, 7-16.   DOI
35 Sargent, G., van Zutphen, T., Shatseva, T., Zhang, L., Di Giovanni, V., Bandsma, R. and Kim, P.K. (2016). PEX2 is the E3 ubiquitin ligase required for pexophagy during starvation. J. Cell Biol. 214, 677-690.   DOI
36 Schluter, A., Fourcade, S., Ripp, R., Mandel, J.L., Poch, O., and Pujol, A. (2006). The evolutionary origin of peroxisomes: an ER-peroxisome connection. Mol. Biol. Evol. 23, 838-845.   DOI
37 Choy, K.R., and Watters, D.J. (2017). Neurodegeneration in ataxiatelangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn, 2017 May 2022. doi: 2010.1002/dvdy.24522.
38 Deb, R., and Nagotu, S. (2017). Versatility of peroxisomes: An evolving concept. Tissue Cell 49, 209-226.   DOI
39 Deosaran, E., Larsen, K.B., Hua, R., Sargent, G., Wang, Y., Kim, S., Lamark, T., Jauregui, M., Law, K., Lippincott-Schwartz, J., et al. (2013). NBR1 acts as an autophagy receptor for peroxisomes. J. Cell Sci. 126, 939-952.   DOI
40 Dirkx, R., Vanhorebeek, I., Martens, K., Schad, A., Grabenbauer, M., Fahimi, D., Declercq, P., Van Veldhoven, P.P., and Baes, M. (2005). Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41, 868-878.   DOI
41 Du, H., Kim, S., Hur, Y.S., Lee, M.S., Lee, S.H. and Cheon, C.I. (2015). A cytosolic thioredoxin acts as a molecular chaperone for peroxisome matrix proteins as well as antioxidant in peroxisome. Mol. Cells 38, 187-194.   DOI
42 Katsuragi, Y., Ichimura, Y., and Komatsu, M. (2015). p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672-4678.   DOI
43 Zientara-Rytter, K., and Subramani, S. (2016). Autophagic degradation of peroxisomes in mammals. Biochem. Soc. Trans. 44, 431-440.   DOI
44 Huybrechts, S.J., Van Veldhoven, P.P., Brees, C., Mannaerts, G.P., Los, G.V., and Fransen, M. (2009). Peroxisome dynamics in cultured mammalian cells. Traffic 10, 1722-1733.   DOI
45 Ichimura, Y., Kumanomidou, T., Sou, Y.S., Mizushima, T., Ezaki, J., Ueno, T., Kominami, E., Yamane, T., Tanaka, K., and Komatsu, M. (2008). Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283, 22847-22857.   DOI
46 Islinger, M., Cardoso, M.J., and Schrader, M. (2010). Be different--the diversity of peroxisomes in the animal kingdom. Biochim. Biophys. Acta 1803, 881-897.   DOI
47 Jain, A., Lamark, T., Sjottem, E., Larsen, K.B., Awuh, J.A., Overvatn, A., McMahon, M., Hayes, J.D., and Johansen, T. (2010). p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576-22591.   DOI
48 Jiang, L., Hara-Kuge, S., Yamashita, S. and Fujiki, Y. (2015). Peroxin Pex14p is the key component for coordinated autophagic degradation of mammalian peroxisomes by direct binding to LC3-II. Genes Cells 20, 36-49.   DOI
49 Johansen, T., and Lamark, T. (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279-296.   DOI
50 Kiel, J.A., Veenhuis, M., van der Klei, I.J. (2006). PEX genes in fungal genomes: common, rare or redundant. Traffic 7, 1291-1303.   DOI
51 Kim, P.K. (2017). Peroxisome biogenesis: a union between two organelles. Curr. Biol. 27, R271-R274.   DOI
52 Kim, Y.C., and Guan, K.L. (2015). mTOR: a pharmacologic target for autophagy regulation. J. Clin. Invest 125, 25-32.   DOI
53 Tumbarello, D.A., Manna, P.T., Allen, M., Bycroft, M., Arden, S.D., Kendrick-Jones, J. and Buss, F. (2015). The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy. PLoS Pathog. 11, e1005174.   DOI
54 Shimozawa, N., Imamura, A., Zhang, Z., Suzuki, Y., Orii, T., Tsukamoto, T., Osumi, T., Fujiki, Y., Wanders, R.J., Besley, G., et al. (1999a). Defective PEX gene products correlate with the protein import, biochemical abnormalities, and phenotypic heterogeneity in peroxisome biogenesis disorders. J. Med. Genet. 36, 779-781.   DOI
55 Shimozawa, N., Suzuki, Y., Zhang, Z., Imamura, A., Toyama, R., Mukai, S., Fujiki, Y., Tsukamoto, T., Osumi, T., Orii, T., et al. (1999b). Nonsense and temperature-sensitive mutations in PEX13 are the cause of complementation group H of peroxisome biogenesis disorders. Hum. Mol. Genet. 8, 1077-1083.   DOI
56 Shimozawa, N., Zhang, Z., Suzuki, Y., Imamura, A., Tsukamoto, T., Osumi, T., Fujiki, Y., Orii, T., Barth, P.G., Wanders, R.J., et al. (1999c). Functional heterogeneity of C-terminal peroxisome targeting signal 1 in PEX5-defective patients. Biochem. Biophys. Res. Commun. 262, 504-508.   DOI
57 Duran, A., Linares, J.F., Galvez, A.S., Wikenheiser, K., Flores, J.M., Diaz-Meco, M.T., and Moscat, J. (2008). The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell 13, 343-354.   DOI
58 Smith, C.E., Poulter, J.A., Levin, A.V., Capasso, J.E., Price, S., Ben-Yosef, T., Sharony, R., Newman, W.G., Shore, R.C., Brookes, S.J., et al. (2016). Spectrum of PEX1 and PEX6 variants in Heimler syndrome. Eur. J. Hum. Genet. 24, 1565-1571.   DOI
59 South, S.T., and Gould, S.J. (1999). Peroxisome synthesis in the absence of preexisting peroxisomes. J Cell Biol 144, 255-266.   DOI
60 Tamura, S., Matsumoto, N., Imamura, A., Shimozawa, N., Suzuki, Y., Kondo, N., and Fujiki, Y. (2001). Phenotype-genotype relationships in peroxisome biogenesis disorders of PEX1-defective complementation group 1 are defined by Pex1p-Pex6p interaction. Biochem. J. 357, 417-426.
61 Fransen, M., Nordgren, M., Wang, B., and Apanasets, O. (2012). Role of peroxisomes in ROS/RNS-metabolism: implications for human disease. Biochim. Biophys. Acta 1822, 1363-1373.   DOI
62 Ebberink, M.S., Koster, J., Visser, G., Spronsen, Fv., Stolte-Dijkstra, I., Smit, G.P., Fock, J.M., Kemp, S., Wanders, R.J., and Waterham, H.R. (2012). A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11beta gene. J. Med. Genet. 49, 307-313.   DOI
63 Feng, L., Zhang, J., Zhu, N., Ding, Q., Zhang, X., Yu, J., Qiang, W., Zhang, Z., Ma, Y., Huang, D., et al. (2017). Ubiquitin ligase SYVN1/HRD1 facilitates degradation of the SERPINA1 Z variant/alpha-1-antitrypsin Z variant via SQSTM1/p62-dependent selective autophagy. Autophagy 13, 686-702.   DOI
64 Ferdinandusse, S., Falkenberg, K.D., Koster, J., Mooyer, P.A., Jones, R., van Roermund, C.W.T., Pizzino, A., Schrader, M., Wanders, R.J.A., Vanderver, A., et al. (2017). ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J. Med. Genet. 54, 330-337.   DOI
65 Gao, X., and Schottker, B. (2017). Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 8, 51888-51906.
66 Giannopoulou, E.A., Emmanouilidis, L., Sattler, M., Dodt, G., and Wilmanns, M. (2016). Towards the molecular mechanism of the integration of peroxisomal membrane proteins. Biochim. Biophys. Acta 1863, 863-869.   DOI
67 Goldfischer, S., Moore, C.L., Johnson, A.B., Spiro, A.J., Valsamis, M.P., Wisniewski, H.K., Ritch, R.H., Norton, W.T., Rapin, I., and Gartner, L.M. (1973). Peroxisomal and mitochondrial defects in the cerebrohepato-renal syndrome. Science 182, 62-64.   DOI
68 Kirkin, V., Lamark, T., Sou, Y.S., Bjorkoy, G., Nunn, J.L., Bruun, J.A., Shvets, E., McEwan, D.G., Clausen, T.H., Wild, P., et al. (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33, 505-516.   DOI
69 Kim, P.K., Hailey, D.W., Mullen, R.T., and Lippincott-Schwartz, J. (2008). Ubiquitin signals autophagic degradation of cytosolic proteins and peroxisomes. Proc. Natl. Acad. Sci. USA 105, 20567-20574.   DOI
70 Kim, Y.S., Lee, H.M., Kim, J.K., Yang, C.S., Kim, T.S., Jung, M., Jin, H.S., Kim, S., Jang, J., Oh, G.T., et al. (2017). $PPAR-{\alpha}$ activation mediates innate host defense through induction of TFEB and lipid catabolism. J. Immunol. 198, 3283-3295.   DOI
71 Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. ( 2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222.   DOI
72 Komatsu, M., Waguri, S., Koike, M., Sou, Y.S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163.   DOI
73 Kumar, S., Kawalek, A., and van der Klei, I.J. (2014). Peroxisomal quality control mechanisms. Curr. Opin. Microbiol. 22, 30-37.   DOI
74 Law, K.B., Bronte-Tinkew, D., Di Pietro, E., Snowden, A., Jones, R.O., Moser, A., Brumell, J.H., Braverman, N., and Kim, P.K. (2017). The peroxisomal AAA ATPase complex prevents pexophagy and development of peroxisome biogenesis disorders. Autophagy 13, 868-884.   DOI
75 Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I. and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314.   DOI
76 Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L., Kim, J., May, J., Tocilescu, M.A., Liu, W., Ko, H.S., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A 107, 378-383.   DOI
77 Vadlamudi, R.K., Joung, I., Strominger, J.L., and Shin, J. (1996). p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 271, 20235-20237.   DOI
78 Van den Brink, D.M., Brites, P., Haasjes, J., Wierzbicki, A.S., Mitchell, J., Lambert-Hamill, M., de Belleroche, J., Jansen, G.A., Waterham, H.R., and Wanders, R.J. (2003). Identification of PEX7 as the second gene involved in Refsum disease. Am. J. Hum. Genet. 72, 471-477.   DOI
79 Van Os, N.J., Roeleveld, N., Weemaes, C.M., Jongmans, M.C., Janssens, G.O., Taylor, A.M., Hoogerbrugge, N., and Willemsen, M.A. (2016). Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin. Genet. 90, 105-117.   DOI
80 Vasko, R., Ratliff, B.B., Bohr, S., Nadel, E., Chen, J., Xavier, S., Chander, P., and Goligorsky, M.S. (2013). Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid. Redox. Signal. 19, 211-230.   DOI
81 Von Muhlinen, N., Thurston, T., Ryzhakov, G., Bloor, S. and Randow, F. (2010.) NDP52, a novel autophagy receptor for ubiquitin-decorated cytosolic bacteria. Autophagy 6, 288-289.   DOI
82 Wanders, R.J., Waterham, H.R., and Ferdinandusse, S. (2016). Metabolic Interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front Cell Dev. Biol. 3, 83.
83 Wanders, R.J., Klouwer, F.C., Ferdinandusse, S., Waterham, H.R., and Poll-The, B.T. (2017). clinical and laboratory diagnosis of peroxisomal disorders. Methods Mol. Biol. 1595, 329-342.
84 Heymans, H.S., Oorthuys, J.W., Nelck, G., Wanders, R.J., and Schutgens, R.B. (1985). Rhizomelic chondrodysplasia punctata: another peroxisomal disorder. N Engl. J. Med. 313, 187-188.
85 Gould, S.J., and Valle D. (2000). Peroxisome biogenesis disorders: genetics and cell biology. Trends Genet. 16, 340-345.   DOI
86 Heiland, I., and Erdmann, R. (2005). Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteins. FEBS J. 272, 2362-2372.   DOI
87 Heymans, H.S., Schutgens, R.B., Tan, R., van den Bosch, H., and Borst, P. (1983). Severe plasmalogen deficiency in tissues of infants without peroxisomes (Zellweger syndrome). Nature 306, 69-70.   DOI
88 Hiltunen, J.K., Mursula, A.M., Rottensteiner, H., Wierenga, R.K., Kastaniotis, A.J., Gurvitz, A. (2003). The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27, 35-64.   DOI
89 Lee, M.Y., Sumpter, R., Jr., Zou, Z., Sirasanagandla, S., Wei, Y., Mishra, P., Rosewich, H., Crane, D.I. and Levine, B. (2017). Peroxisomal protein PEX13 functions in selective autophagy. EMBO Rep. 18, 48-60.   DOI
90 Lee, J.M., Wagner, M., Xiao, R., Kim, K.H., Feng, D., Lazar, M.A., and Moore, D.D. (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516, 112-115.
91 Linares. J.F., Duran, A., Yajima, T., Pasparakis, M., Moscat, J., and Diaz-Meco, M.T. (2013). K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol. Cell 51, 283-296.   DOI
92 Liu, Y., Bjorkman, J., Urquhart, A., Wanders, R.J., Crane, D.I., and Gould, S.J. (1999). PEX13 is mutated in complementation group 13 of the peroxisome-biogenesis disorders. Am. J. Hum. Genet. 65, 621-634.   DOI
93 Liu, X.F., Hao, J.L., Xie, T., Malik, T.H., Lu, C.B., Liu, C., Shu, C., Lu, C.W., and Zhou, D.D. (2017). Nrf2 as a target for prevention of agerelated and diabetic cataracts by against oxidative stress. Aging Cell 16, 934-942.   DOI
94 Mardakheh, F.K., Auciello, G., Dafforn, T.R., Rappoport, J.Z., and Heath, J.K. (2010). Nbr1 is a novel inhibitor of ligand-mediated receptor tyrosine kinase degradation. Mol. Cell Biol. 30, 5672-5685.   DOI
95 Martinez-Vicente, M. (2017). Neuronal mitophagy in neurodegenerative diseases. Front Mol. Neurosci. 10, 64.
96 Mathew, R., Karp, C.M., Beaudoin, B., Vuong, N., Chen, G., Chen, H.Y., Bray, K., Reddy, A., Bhanot, G., Gelinas, C., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075.   DOI
97 Huybrechts, S.J., Van Veldhoven, P.P., Hoffman, I., Zeevaert, R., de Vos, R., Demaerel, P., Brams, M., Jaeken, J., Fransen, M., and Cassiman, D. (2008). Identification of a novel PEX14 mutation in Zellweger syndrome. J. Med. Genet. 45, 376-383.   DOI
98 Honsho, M., Yamashita, S., and Fujiki, Y. (2016). Peroxisome homeostasis: Mechanisms of division and selective degradation of peroxisomes in mammals. Biochim. Biophys. Acta 1863, 984-991.   DOI
99 Hu, J., Baker, A., Bartel, B., Linka, N., Mullen, R.T., Reumann, S., and Zolman, B.K. (2012). Plant peroxisomes: biogenesis and function. Plant Cell 24, 2279-2303.   DOI
100 Hua, R., and Kim, P.K. (2016). Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals. Biochim Biophys Acta 1863, 881-891.   DOI