• 제목/요약/키워드: perovskite oxides

검색결과 87건 처리시간 0.029초

Effect of UVO Treatment on Optical and Electrical Properties of NiOx Thin Film and Perovskite Solar Cells (UVO 처리에 따른 NiOx 박막 및 페로브스카이트 태양전지 셀 특성 변화)

  • Sujin Cho;Jae-Keun Hwang;Dowon Pyun;Seok Hyun Jeong;Solhee Lee;Wonkyu Lee;Ji-Seong Hwang;Youngho Choe;Donghwan Kim
    • Current Photovoltaic Research
    • /
    • 제12권1호
    • /
    • pp.1-5
    • /
    • 2024
  • Perovskite solar cells have exhibited a remarkable increase in efficiency from an initial 3.8% to 26.1%, marking a significant advancement. However, challenges persist in the commercialization of perovskite solar cells due to their low stability with respect to humidity, light exposure, and temperature. Moreover, the instability of the organic charge transport layer underscores the need for exploring inorganic alternatives. In the manufacturing process of the perovskite solar cells' oxide charge transport layer, ultraviolet-ozone (UVO) treatment is commonly applied to enhance the wettability of the perovskite solution. The UVO treatment on metal oxides has proven effective in suppressing surface oxygen vacancies and removing surface organic contaminants. This study focused on the characterization of nickel oxide as the hole transport material in perovskite solar cells, specifically investigating the impact of UVO treatment on film properties. Through this analysis, changes induced by the UVO treatment were observed, and consequent alterations in the device characteristics were identified.

Improved high-performance La0.7Sr0.3MxFe1-xO3 (M = Cu, Cr, Ni) perovskite catalysts for ortho-para hydrogen spin conversion

  • Choi, Jeong-Gil;Choi, Euiji;Kweon, Soon-Cheol;Oh, In-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제28권1호
    • /
    • pp.44-50
    • /
    • 2018
  • The improved high-performance Fe-based perovskite-type oxides ($La_{0.7}Sr_{0.3}M_xFe_{1-x}O_3$, M = Cu, Cr, Ni) were synthesized by a citrate method and characterized by SEM, EDS, XRD and NMR spectroscopy analyses. The characterization analyses revealed that the stoichiometric amounts of lattice oxygen were existed in all of perovskite samples except for a nickel-doped perovskite. Fe-based perovskites exhibited a surprising result for ortho-para $H_2$ spin conversion reaction, indicating two orders of magnitude higher conversions and conversion rates than commercial $Fe_2O_3$. It was considered that this conversion difference might be attributed to the presence of oxygen vacancies in Fe-based perovskites prepared in this study.

Investigation on the Structural, Electrical and Magnetic Properties of Layered Perovskite Manganite La0.5Sr1.5Mn0.5Cr0.5-xFexO4 (x=0.15, 0.3) System (층상 페로브스카이트 구조인 La0.5Sr1.5Mn0.5Cr0.5-xFexO4 (x=0.15, 0.3) 망가나이트의 구조적, 전기적, 자기적 특성의 연구)

  • Singh, Devinder
    • Journal of the Korean Chemical Society
    • /
    • 제55권4호
    • /
    • pp.697-702
    • /
    • 2011
  • The new layered perovskite manganites $La_{0.5}Sr_{1.5}Mn_{0.5}Cr_{0.5-x}Fe_xO_4$ (x=0.15, 0.3) have been prepared by standard ceramic method. The powder X-ray diffraction studies show that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The electrical transport properties suggest that the phases show insulating behaviour and the electrical conduction in the phases occurs by a 3D variable range hopping mechanism. The magnetic properties suggest that both the phases are antiferromagnetic.

Preparations of PZT Ceramic by Solution Combustion Synthesis (용액연소합성방법에 의한 PZT세라믹의 제조)

  • 이상진;윤존도;권혁보;전병세
    • Journal of the Korean Ceramic Society
    • /
    • 제39권1호
    • /
    • pp.74-78
    • /
    • 2002
  • In this study, the solution combustion method was employed to synthesize perovskite PZT ceramics. Multicomponent oxides can be prepared by the solution combustion synthesis using redox exothermic reaction of precursor solutions. The results of DTA/TG showed exothermic peaks in 214$^{\circ}C$ and 350$^{\circ}C$. Those were caused by the differences of the thermal decomposition behavior of oxidizer and fuel. The combustion reaction was completed at 370$^{\circ}C$ during heating procedure, but the product was not transformed into perovskite. The thermal decomposition behavior of both oxidizer and fuel were considered during solution combustion process at 600$^{\circ}C$, which showed tetragonal single phase PZT ceramics with 50 nm crystalline size. The lattice constant a was 3.997 ${\pm}$ 0.001 ${\AA}$ and the lattice constant c was 4.147${\pm}$0.001 ${\AA}$.

A review of smart exsolution catalysts for the application of gas phase reactions (기상 반응용 스마트 용출 촉매 연구 동향)

  • Huang, Rui;Kim, Hyung Jun;Han, Jeong Woo
    • Ceramist
    • /
    • 제23권2호
    • /
    • pp.211-230
    • /
    • 2020
  • Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.

Raman Spectra of the Solid-Solution between $Rb_2La_2Ti_3O_10$ and $RbCa_2Nb_3O_10$

  • Kim, Hui Jin;Byeon, Song Ho;Yun, Ho Seop
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권3호
    • /
    • pp.298-302
    • /
    • 2001
  • A site preference of niobium atom in Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ and RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$, which are the solid-solutions between Rb2La2Ti3O10 and RbCa2Nb3O10, has been investigated by Raman spectroscopy. The Raman spectra of Rb2-xLa2Ti3-xNbxO10 (0.0 $\leq$ x $\leq1.0)$ gave an evidence that niobium atoms substituted for titanium atoms preferably occupy the highly distorted outer octahedral sites rather than the central ones in triple-octahedral perovskite layers. In contrast, the Raman spectra of RbLa2-xCaxTi2-xNb1+xO10 (0.0 $\leq$ x $\leq2.0)$ showed no clear information for the cationic arrangement in perovskite slabs. This difference indicated that a site preference of niobium atoms is observed only when the linear Rb-O-Ti linkage can be replaced by much stronger terminal Nb-O bond with double bond character. From comparison with the Raman spectroscopic behavior of CsLa2-xA’xTi2-xNb1+xO10 (A’ = Ca and Ba; 0.0 $\leqx\leq2.0)$, it is also proposed that a local difference in arrangement of interlayer atoms causes a significantly different solid acidity and photocatalytic activity of the layered perovskite oxides, despite their crystallographically similar structures.

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • 제32권1호
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Photocatalytic Decomposition of Methyl Orange over Alkali Metal Doped LaCoO3 Oxides (알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • 제55권5호
    • /
    • pp.718-722
    • /
    • 2017
  • We have investigated the photocatalytic activity for the decomposition of methyl orange on the pure $LaCoO_3$ and metal ion doped $LaCoO_3$ perovskite-typeoxides prepared using microwave process. In the case of pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts, the formation of the perovskite crystalline phase was confirmed regardless of the preparation method. From the results of UV-Vis DRS, the pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better performance of photocatalyst.

Investigation of Lattice Effects in Perovskites by $O-isotope^{18}$ Exchange

  • Itoh, Mitsuru;Mahesh, Rajappan;Wang, Ruiping
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.309-314
    • /
    • 2000
  • In the present study, preliminary experimental results of the change in the properties of perovskite-type oxides caused by the $^{18}O$- exchange have been reported. Two systems were selected for the exchange, (1) $ATiO_3$(A=Ca,Sr,Ba) and (2) manganese perovskite. The dielectric properties of isotope-exchanged $SrTi^{18}O_3$showed a drastic change from a quantum paraelectricity below 3K to ferroelectric-like behavior with a peak at 23K and an enhanced dielectric constant, 35000 at the peak. On the contrary, the $T_c$ for $BaTiO_3$was found to increase by 0.9K. The observed isotope shift of $T_c$ as well as $T_co$ for the manganese perovskites is correlated with the key parameters controlling the lattice such as $Mn^{3+}$ content, average ionic radius of the A-site cation <$r_A$> ad A-site ionic disorder $\sigma^2$.

  • PDF

Adsorption of $N_2$ and Ar Gases on the Non-porous Perovskite Surfaces (무공성 Perovskite 표면에서의 $N_2$와 Ar 기체의 흡착)

  • Hyun-Woo Cho;Jung-Soo Kim;Kwang-Soon Lee;Woon-Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • 제35권3호
    • /
    • pp.204-210
    • /
    • 1991
  • Multilayer adsorption isotherms of nitrogen and argon on the perovskite-type mixed oxides, synthesized by a citrate coprecipitation method, are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume of the adsorbed gas are plotted against the statistical thickness of the adsorbed layer, calculated from several universal adsorption isotherms one after another. The t-method area obtained from this plot is compared with the BET area and finally the appropriateness of universal adsorption isotherms is then discussed on the basis of the plot.

  • PDF