• Title/Summary/Keyword: perovskite/pyrochlore phase

Search Result 72, Processing Time 0.035 seconds

Ferroelectric Characteristics of Pb-containing Perovskite-Pyrochlore Composites (Pb계 Perovskite-Pyrochlore 복합체의 강유전특성)

  • 조진우;손정호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.500-504
    • /
    • 1997
  • Perovskite Pb0.7Ba0.3Zn1/3Nb2/3O3 substituted with 0.3 mole fraction for Pb-site in PbZn1/3Nb2/3O3 relaxor and pyrochlore Pb1.83Ba0.29Zn1.71Nb2/3O6.39 were mixed and dielectric characteristics of this composites were investigated. Percolation limit of perovskite phase, which was determined by microstructural observation in the composite as an isolation of perovskite phase from pyrochlore matrix, was 28.9-47.5 vol%. Ferroelectric phase transition below percolation limit depends on a parameter which affects the propagation of lattice vibration between isolated perovskite phase and pyrochlore matrix. Therefore, it is believed that ferroelectric lattice vibration of isolated perovskite phase could be transfered to pyrochlore matrix when the oxygen octahedra are linked in 3-dimension and highly polarizable Pb2+ ions are contained in both phases.

  • PDF

Stabilization of the Perovskite Phase and Dielectric Properties in the System $Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O_3$ ($Pb(Zn_{1/3}Nb_{2/3})O_3-Pb(Fe_{1/2}Nb_{1/2})O_3$계에서의 Perovskite상의 안정성 및 유전특성)

  • 김정욱;최성철;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.295-304
    • /
    • 1995
  • Stabilization of the perovskite phase and sequence of reactions occuring during calcination were studied with solid solutions formed between Pb(Zn1/3Nb2/3)O3 and Pb(Fe1/2Nb1/2)O3. In the PZN-PFN composition of equal molar ratio, rhombohedral type pyrochlore phase (Pb2Nb2O7) and PbO-rich distorted cubic type pyrochlore phase (Pb3Nb2O8) were coexisted as intermediate phases at temperatures below 85$0^{\circ}C$, and these phases transformed to a stable cubic type pyrochlore phase, Pb3Nb4O13 solid solution and a perovskite solid solution at temperatures above 85$0^{\circ}C$. The major stable phase as increasing sintering temperatures was a perovskite phase in this binary system and prominent suppression of the pyrochlore phase was achieved by substituting Zn2+ with Fe3+ or by increasing sintering temperature. The composition containing 20mol% PZN possessed the best dielectric properties, and the dissipation factor was lower than 5% in all compositions.

  • PDF

Variation of Dielectric Constnat with Grain Size of Pyrochlore Phase in the PMN-Pyrochlore Diphasic Mixtrues (Pyrochlore상의 입자크기에 따른 PMN-Pyrochlore 2상 혼합체의 유전율 변화)

  • 허강일;김정주;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.5
    • /
    • pp.365-372
    • /
    • 1993
  • Variation of dielectric constant in PMN-Pyrochlore diphasic mixtures were investigated with grain size of pyrochlore phase. Size of pyrochlore phase was controlled by the numbers of calcining and sedimentation method during powder processing. When grain size of pyrochlore phase is large in the sintered specimen, dielectric constant slowly decreased with increase of amount of pyrochlore phase. On the contary, grain size of pyrochlore phase is small, dielectric constant drastically decreased. It was thought that small sized pyrochlore grains more easily surrounded high dielectric phase (perovskite PMN) than large ones with addition of pyrochlore phase.

  • PDF

Powder Preparation by Hydroxide Coprecipitation and Phase Development of Pb0.97La0.02(Zr0.64Sn0.25Ti0.11)O3 Ceramics

  • Lee, Joon-Hyung;Chiang, Yet-Ming
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.260-267
    • /
    • 1998
  • A homogeneous and stoichimetric fine powder of the ferroelectric $Pb_[0.97}La_{0.02}(Zr_{0.64}Sn_{0.25}Ti_{0.11})O_3$ (PLZST) has been prepared by the hydroxide coprecipitation method. Studies on the crystallization behavior of precursor as a function of temperature by X-ray powder diffraction and transmission electron microscopy technique were consistent with the formation of the pyrochlore phase from amorphous, initially at low temperatures around 500~$550^{\circ}C$. Further heat treatment up to $750^{\circ}C$ resulted in development of the perovskite phase with no significant pyrochlore crystallite growth. At intermediate temperatures the precursor yields a fine mixture of pyrochlore and perovskite phases. When the pyrochlore phase was heat teated in air, slight weight increase was observed in the temperature range of 300~$700^{\circ}C$, which is thought to be caused from oxygen absorption. In argon atmosphere, weight increase was not observed. On the other hand, weight loss began to occur near $700^{\circ}C$, with giving off mostly CO2 gas. This implies that the pyrochlore phase seems to be crystallorgraphycally and thermodynamically metastable. An apparent activation energy of 53.9 ㎉/mol was estimated for the pyrochlore-perovskite phase transformation.

  • PDF

Reaction Mechanism in the Formation of PMN-PT-BT Solid Solution (PMN-PT-BT 고용체의 합성반응기구)

  • Park, Hyun;Lee, Eung-Sang
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1443-1448
    • /
    • 1994
  • Pb(Mg1/3Nb2/3)O3-PbTiO3-BaTiO3 solid solution was formed by mixed-oxide method. The phase during formation was analysed by XRD and formation mechanism was investigated. While heat-treating Pb(Mg1/3Nb2/3)O3 composition, the first, Pb2Nb2O7 and Pb3Nb2O8 pyrochlore phases are formed, and finally Pb(Mg1/3Nb2/3)O3 perovskite phase with containing Pb3Nb4O13 pyrochlore phase is obtained at 80$0^{\circ}C$. When Pb(Mg1/3Nb2/3)O3 composition is modified with PbTiO3 which have strong ionic bonding and high tolerance factor, the amount of pyrochlore phase is decreased by increasing of stability in perovskite structure.

  • PDF

Oxygen Evolution Reaction at Electrodes of Single Phase Ruthenium Oxides with Perovskite and Pyrochlore Structures$^{**}$

  • 최은옥;권영욱;모선일
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.972-976
    • /
    • 1997
  • Single phase ruthenium oxides with perovskite (ATi1-xRuxO3 (A=Ca, Sr)) and pyrochlore structure (Bi2Ru2O7, Pb2Ru2O6.5) have been prepared reproducibly by solid state reaction methods and their electrocatalytic activities for oxygen evolution have been examined by Tafel plots. Tafel slopes vary from a low value of 42 mV/decade up to 222 mV/decade at room temperature. The high exchange current densities and high Tafel slopes compared with those obtained from the RuO2 DSA electrode at the crystalline single phase metal oxide electrodes suggest that they are better electrocatalysts at low overpotentials. A favorable change in the Tafel slope for the oxygen evolution reaction occurs as the ruthenium content increases. Substitution of Ti for Ru in the perovskite solid solutions enhanced their chemical stability by losing marginal electrochemical activity.

Evaluating Properties for Bi-layer PZT thin film Fabricated by RF-Magnetron Sputtering System (RF-마그네트론 스퍼터링법으로 제작한 이층형 PZT의 특성평가)

  • Lim, Sil-Mook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.222-227
    • /
    • 2020
  • Pb(Zr,Ti)O3(denoted as PZT) in the perovskite phase is used as a dielectric, piezoelectric, and super appetizer material owing to its ferroelectric properties. A PZT film was formed by an RF magnetron sputtering process by preparing a target composed of Pb1.3(Zr0.52Ti0.48)O3. The PZT film was formed by dividing the material into a mono-layer PZT produced continuously with the same sputtering power and a bi-layer PZT produced with two-stage sputtering power. The bi-layer PZT consisted of a lower layer produced under low-power sputtering conditions and an upper layer produced under the same conditions as the mono-layer PZT. XRD revealed small amounts of pyrochlore phase in the mono-layer PZT, but only the perovskite phase was detected in the bi-layer PZT. SEM and AFM revealed the upper part of the bi-layer PZT to be more compact and smooth. Moreover, the bi-layered PZT showed superior symmetry polarization and a significantly reduced leakage current of less than 1×10-5 A/cm2. This phenomenon observed in bi-layer PZT was attributed to the induction of growth into a pure perovskite phase by suppressing the formation of a pyrochlore phase in the upper PZT layer where the densely formed lower PZT layer was produced sequentially.

Variation of Dielectric Constant with the Volume Fraction of Pyrochlore Phae in the PMN-Polychlore Diphasic System ; Application of General Effective Media Equation (Pyrochlore상의 부피분율에 따른 PMN-Pyrochlore 2상 혼합체의 유전율변화;General Effective Media식의 적용)

  • 허강일;김정주;김남경;김진호;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.1
    • /
    • pp.78-84
    • /
    • 1993
  • In PMN-pyrochlore phase mixtures, dielectric constant was measured as a function of the volume fraction of pyrochlore phase and considered with general effective media(GEM) equation. For the application of GEM equation to this system, the critical volume fraction(Vc) where connectivity between the perovskite PMN and pyrochlore phase changed from 0-3 to 3-3, was determined based on the each particle size ratio of two phases with microstructural observation. And then the t value was determined from modified percolation powder-law dependence ( K-Kc (V-Vc)t). In the case of applying such values of t and Vc to the GEM equation, which provided a reasonable fit to the measured dielectric constant within the experimental error range.

  • PDF

Influence of BaTiO3 Content and Firing Temperature on the Dielectric Properties of Pb(Mg1/3Nb2/3)O3 Ceramics (Pb(Mg1/3Nb2/3)O3계의 유전성에 미치는 BaTiO3첨가량 및 열처리 온도의 영향 (PMN-BaTiO3계 세라믹스의 합성 및 유전성))

  • 윤기현;강동헌
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.2
    • /
    • pp.249-257
    • /
    • 1989
  • Dielectric properties and the stability of the perovskite phase in the Pb(Mg1/3Nb2/3)O3 system have been investigated as a function of amount of BaTiO3 and firing temperature. In the specimens fired at 120$0^{\circ}C$, the pyrochlore phase was eliminated by the addition of 10-15m/o BaTiO3 and also the dielectric constant increased. However, the dielectric constant decreased with further addition of BaTiO3 even though no pyrochlore phase was found to be present. The reducing tendency of the pyrochlore phase decreased with lowering the firing temperature in the system of Pb(Mg1/3Nb2/3)O3 with BaTiO3. Dielectric properties in PMN ceramics were affected by the character of the BaTiO3 rather than the pyrochlore phase.

  • PDF

Development of Matrix for the Immobilization of High Level Radioactive Waste : Study on the Synthesis of Ce-pyrochlore (고준위 핵페기물의 고정화를 위한 메트릭스 개발 : Ce파이로클로어 합성 연구)

  • ;;;Yudintsev, S. V²
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.97-102
    • /
    • 2002
  • Ce-pyrochlore (CaCe $Ti_2 $O_7)was synthesized to study its properties and phase relations in CaO-Ce $O_2$-Ti $O_2$ system because Ce-pyrochlore was known as a promising material for the immobilization of radioactive actinide. The samples were prepared from the high purity starling materials under the pressure of 200~400 kg/$\textrm{cm}^2$ at room temperature, and annealed at 1000~ 150$0^{\circ}C$. The Synthesized samples were analysed and indentified with XRD and SEM/EDS methods. The optimal formation condition of Ce-pyrochlore was at 130$0^{\circ}C$ under $O_2$ atmosphere and the chemical composition of it wasCa$Ca_{1-x}Ti_{2-y}O_{7-x-2y}$(x=0.03-0.05, y=0.02~0.04) At temperature between 130$0^{\circ}C$ 140$0^{\circ}C$, Ce-pyrochlore underwent rapidly the incongruent decomposition to perovskite. Ce-perovskite, a partial solid solution between perovskite and loparite (C $e_{0.66}$Ti $O_3$), was observed as a major phase above 140$0^{\circ}C$.>.