• Title/Summary/Keyword: perovskite$LaCoO_3$

Search Result 106, Processing Time 0.023 seconds

$La_{0.7}Ca_{0.3}Cr_{0.9}Co_{0.1}O_3$에 소결 조제 첨가에 따른 물리적 특성 변화

  • Seol, Gwang-Hui;Choe, Byeong-Hyeon;Ji, Mi-Jeong;Gwon, Yong-Jin;Lee, Seo-Hwan;Nam, San
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.96.1-96.1
    • /
    • 2012
  • SOFC는 다른 연료전지보다 상대적으로 높은 구동 온도를 가지며 그로인해 높은 에너지 효율을 가진다. 먼저 금속연결제의 경우 높은 고온에서 산화 반응이 쉽게 일어나기 때문에 이로 인하여 연결재의 주요 특성인 전기전도도의 감소와 부피변화로 인한 크랙등이 유발되어 연결재의 주요 기능인 전기적인 연결 뿐만 아니라, 물리적으로 양극과 음극의 차폐 또한 어려워져 장기 구동에 있어서 주요 결함의 원인이되고 있다. 이로 인하여 많은 세라믹 연결재의 개발이 진행되어왔고, 이중에서 perovskite-structure를 가지는 LCO계의 연결재에 대한 연구가 활발히 진행되고 있다. $LaCrO_3$는 열팽창 계수가 주요 구성소재들과 유사하다는 장점과 도핑과 친환으로 인하여 특성제어가 용이하다는 이유 때문에 주로 사용되고 있다. 그러나 $LaCrO_3$는 낮은 전기전도도와 높은 소결온도에서 Cr휘발되는 단점이 있다. 이를 해결하기 위해서 A에 희토류와 B-site에 전위금속을 치환하여 소결 온도를 낮춘 연구들이 진행 되었다. 본 연구에서는 이런 결과 중 $La_{0.7}Ca_{0.3}Cr_{0.9}Co_{0.1}O_3$조성에 소결조제를 첨가하여 그에 따른 특성변화를 관찰하였다.

  • PDF

Partial Oxidation of CH4 Using {0.7}Sr0.3Ga0.6Fe0.4O3-δ for Soild Oxide Fuel Cell (고체산화물 연료전지용 La0.7Sr0.3Ga0.6Fe0.4O3-δ계의 메탄부분산화반응)

  • Lee, Seung-Young;Lee, Kee-Sung;Lee, Shi-Woo;Kim, Jong-Won;Woo, Sang-Kuk
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2003
  • We fabricated mixed ionic-electronic conducting membranes, $CH_4\;Using\;{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, by solid state reaction method for solid oxide fuel cell. The membranes consisted of single perovskite phase and exhibited high relative density, $>95\%$. We coated $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ layer using screen printing method in order to improve surface reactivity of the $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$. As a result, the oxygen permeation flux of the coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ showed higher value, $0.5ml/min{\cdot}cm^2\;at\;950^{\circ}C$ than the uncoated one. Higher oxygen permeation was observed in the porously coated Lao $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$membranes with larger grain sizes. Syngas, $CO+H_2$, was successfully obtained from methane gas, $CH_4$, using the $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ coated $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$, with over $40\%\;of\;CH_4$ conversion and syngas yield. $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-\delta}$ membrane was stable even when it was exposed to the reducing environment, methane, for 600 hrs at $950^{\circ}C$.

Powder Preparation by Hydroxide Coprecipitation and Phase Development of Pb0.97La0.02(Zr0.64Sn0.25Ti0.11)O3 Ceramics

  • Lee, Joon-Hyung;Chiang, Yet-Ming
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.260-267
    • /
    • 1998
  • A homogeneous and stoichimetric fine powder of the ferroelectric $Pb_[0.97}La_{0.02}(Zr_{0.64}Sn_{0.25}Ti_{0.11})O_3$ (PLZST) has been prepared by the hydroxide coprecipitation method. Studies on the crystallization behavior of precursor as a function of temperature by X-ray powder diffraction and transmission electron microscopy technique were consistent with the formation of the pyrochlore phase from amorphous, initially at low temperatures around 500~$550^{\circ}C$. Further heat treatment up to $750^{\circ}C$ resulted in development of the perovskite phase with no significant pyrochlore crystallite growth. At intermediate temperatures the precursor yields a fine mixture of pyrochlore and perovskite phases. When the pyrochlore phase was heat teated in air, slight weight increase was observed in the temperature range of 300~$700^{\circ}C$, which is thought to be caused from oxygen absorption. In argon atmosphere, weight increase was not observed. On the other hand, weight loss began to occur near $700^{\circ}C$, with giving off mostly CO2 gas. This implies that the pyrochlore phase seems to be crystallorgraphycally and thermodynamically metastable. An apparent activation energy of 53.9 ㎉/mol was estimated for the pyrochlore-perovskite phase transformation.

  • PDF

Fabrication of Fe-doped LaGaO3 Perovskite Mixed Conductor and Improvement of Oxygen Permeability by Screen Printing Coating (Fe가 Doping 된 LaGaO3 폐롭스카이트 혼합 전도체의 제조 및 코팅에 따른 산소투과 성능 향상)

  • Lim, Kyung Tae;Cho, Tong Lae;Lee, Kee Sung;Woo, Sang Kuk;Park, Kee Bae;Kim, Jong Won
    • Journal of Hydrogen and New Energy
    • /
    • v.12 no.2
    • /
    • pp.137-146
    • /
    • 2001
  • 고상 반응법을 이용하여 $La_{0.7}Sr_{0.3}Ga_{0.6}Fe_{0.4}O_{3-{\delta}}$ 분말을 합성하고 혼합전도체 분리막을 소결하여 제조하였다. 제조된 분리막은 $LaGaO_3$에 일치하는 폐롭스카이트 결정구조를 나타내었으며 95% 이상의 높은 상대밀도를 나타내었다. 스크린 프린팅 방법으로 $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ 후막을 disk의 양 표면에 코팅하였으며 코팅 막은 비교적 치밀한 미세구조를 나타내었다. 코팅되지 않은 분리막과 코팅된 분리막의 산소투과 성능을 비교 실험한 결과 $850^{\circ}C$에서 동일한 두께의 코팅된 분리막의 정상상태 산소 투과 유속이 $0.7{m{\ell}}/min.cm^2$ 정도로 코팅되지 않은 분리막에 비해 약 2~3배로 높게 나타났다.

  • PDF

Oxygen Permeation and Mechanical Properties of La0.6Sr0.4Co0.2Fe0.8O3-δ Membrane with Different Microstructures (미세구조에 따른 La0.6Sr0.4Co0.2Fe0.8O3-δ 분리막의 산소투과 및 기계적 특성)

  • Lee, Shi-Woo;Lee, Seung-Young;Lee, Kee-Sung;Woo, Sang-Kuk;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.994-1000
    • /
    • 2002
  • Oxygen permeability and the mechanical properties of mixed ionic-electronic conductive $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ perovskite-type membrane, fabricated by solid state reaction, were investigated with regard to microstructure. The microstructure of the membrane was controlled by changing the sintering temperature and holding time. The average grain size and relative density were evaluated as a function of sintering conditions. As the fraction of grain boundary decreased, oxygen permeability showed a tendency to increase. Especially the maximum oxygen flux of 0.37 ml/$cm^2$${\cdot}$min was measured for the specimen sintered at 1300${\circ}C$ for 10 h, which has high density and relatively large grain size. Fracture strength was dependent on the relative density of sintered body, while fracture toughness increased with average grain size.

Preparation and characterization of La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ electrolyte using glycine-nitrate process (Glycine nitrate process로 합성된 La0.8Sr0.2Ga0.8Mg0.1Co0.1O3-δ 전해질의 제조 및 특성평가)

  • Ok, Kyung-Min;Kim, Kyeong-Lok;Kim, Tae-Wan;Kim, Dong-Hyun;Park, Hee-Dae;Sung, Youl-Moon;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Conductivity of LSGMC materials were affected by secondary phase segregation, composition and synthetic route. $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.1}Co_{0.1}O_{3-{\delta}}$ (LSGMC) powders were prepared using the glycine nitrate process to produce high surface area and compositionally homogeneous powders. The powders were synthesized with different 0.5, 1, 1.5, 2, 2.5 of glycine/cation molar ratios. A single perovskite phase from the synthesized powders was characterized with X-ray diffraction patterns. The obtained sintered pellets showed the dense grain microstructure. In case of 1.5 molar ratio, its density was higher than the others. The electrical conductivity measured at $800^{\circ}C$ was observed to be 0.131 $Scm^{-1}$. In addition, the linear thermal expansion behavior was indicated between $25^{\circ}C$ and $800^{\circ}C$.

Electrochemical Reduction of Carbon Dioxide Using Porous La0.8Sr0.2CuO3 Electrode (다공성 La0.8Sr0.2CuO3 전극을 이용한 이산화탄소의 전기화학적 환원 반응)

  • Kim, Jung Ryoel;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.247-255
    • /
    • 2014
  • $La_{0.8}Sr_{0.2}CuO_3$ powder with the perovskite structure was prepared as electrode catalyst using citrate method. Porous electrode was made with as-prepared catalyst, carbon as supporter and polytetrafluoroethylene (PTFE) as hydrophobic binder. As results of potentiostatic electrolysis with potential of -1.5~-2.5 V vs. Ag/AgCl in 0.1, 0.5 and 1.0 M KOH at 5 and $10^{\circ}C$ on the porous electrode, liquid products were methanol, ethanol, 2-propanol and 1, 2-butanol regardless reaction temperature, while gas products were methane, ethane and ethylene at $5^{\circ}C$, and methane, ethane and propane at $10^{\circ}C$ respectively. Optimal potentials for $CO_2$ reduction in the view of over all faradic efficiency were high values (-2.0 and -2.2 V) for gas products whereas low potential (-1.5 V) for liquid products regardless of concentration and temperature.

Catalytic Reactor of Hydrogen Peroxide for a Micro Thruster (마이크로 추력장치용 과산화수소 촉매 반응기)

  • Lee, Dae-Hun;Cho, Jeong-Hun;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.237-240
    • /
    • 2002
  • Micro catalytic reactors are alternative propulsion device that can be used on a nano satellite. When used with a monopropellant, $H_2O_2$, a micro catalytic reactor needs only one supply system as the monopropellant reacts spontaneously on contact with catalyst and releases heat without external ignition, while separate supply lines for fuel and oxidizer are needed for a bipropellant rocket engine. Additionally, $H_2O_2$ is in liquid phase at room temperature, eliminating the burden of storage for gaseous fuel and carburetion of liquid fuel. In order to design a micro catalytic reactor, an appropriate catalyst material must be selected. Considering the safety concern in handling the monopropellants and reaction performance of catalyst, we selected hydrogen peroxide at volume concentration of 70% and perovskite redox catalyst of lantanium cobaltate doped with strondium. Perovskite catalysts are known to have superior reactivity in reduction-oxidation chemical processes. In particular, lantanium cobaltate has better performance in chemical reactions involving oxygen atom exchange than other perovskite materials. In the present study, a process to prepare perovskite type catalyst, $La_{0.8}Sr_{0.2}CoO_3$, and measurement of its propellant decomposition performance in a test reactor are described.

  • PDF

Electrical Properties of the Lanthanum Ferrite-Based Cathode Materials for Low-Temperature SOFCs (저온 작동형 SOFC Lanthanum Ferrite계 공기극 소재의 전기적 특성)

  • Kang, Ju-Hyun;Choi, Jung-Woon;Shim, Han-Byel;Yoo, Kwang-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.162-168
    • /
    • 2006
  • The perovskites with nominal compositions $La_{0.8}Sr_{0.2}Fe_{1-x}M_xO_3$ (M=Co, Mn, Ni, x=0.1-0.3) were fabricated by a solid-state reaction method as cathode materials of low-temperature operating Solid Oxide Fuel Cells (SOFCs). X-ray diffraction analysis and microstructure observation for the sintered samples were performed. The ac complex impedance were measured in the temperature range $600-900^{\circ}C$ in air and fitted with a Solatron ZView program. The electrical conductivity and polarization resistance of $La_{0.8}Sr_{0.2}Fe_{1-x}M_xO_3$ (M=Co, Mn, Ni, x=0.1-0.3) were characterized systematically. The porosities of the sintered samples were in the range of 25% to 38%. The polarization resistance of $La_{0.8}Sr_{0.2}Fe_{0.7}M_{0.3}O_3$ was $0.291{\Omega}cm^2\;at\;700^{\circ}C$.