• Title/Summary/Keyword: permeate flux

Search Result 305, Processing Time 0.027 seconds

Study on the Nanofiltration of Various Dye Solutions (NF막에 의한 다양한 염료용액의 막분리 특성)

  • Yang, Jeongmok;Kim, Tak-Hyun;Park, Cheolhwan;Kim, Jeehyeong;Kim, Sangyong
    • Clean Technology
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2004
  • This study examined the separation characteristics of some of the most commonly used disperse, reactive and acid dyes by nanofiltration membrane. The chemical characteristics of three major dye solutions such as chemical oxygen demand, total nitrogen, total organic carbon, color, suspended solids, total dissolved solids, conductivity were investigated in this work. Experiments showed that the types of dye had a significant effect on both permeate flux and rejection efficiencies mainly due to the differences among their chemical structures and natures. Especially, the nanofiltration of reactive dye solutions showed higher permeate flux, lower total dissolved solid rejection efficiency and higher organics rejection efficiency than those of disperse dye solutions.

  • PDF

The Effect of Draw Solution Concentration on Forward Osmosis Desalination Performance Using Blended Fertilizer as Draw Solution (유도용액으로 혼합비료를 사용한 정삼투식 해수담수화에서 담수화 성능에 대한 유도용액 농도의 영향)

  • Jeong, Namjo;Kim, Seung-Geon;Kim, Dong Kook;Lee, Ho-Won
    • Membrane Journal
    • /
    • v.23 no.5
    • /
    • pp.343-351
    • /
    • 2013
  • This study is to investigate the effects of the draw solution concentration on forward osmosis desalination performance using blended fertilizer as draw solution. As the concentration of blended fertilizer solution (draw solution) increased, the water permeate flux increased nearly linearly, but PR (performance ratio) was reduced. Using sea water and deionized water as the feed solution, respectively, at the blended fertilizer solution of 600 g/L $H_2O$, the PR obtained were 5.39 and 6.50, respectively. And as the concentration of blended fertilizer solution increased, the reverse solute flux for nitrogen (N), phosphorus (P), and potassium (K) increased nearly linearly, but specific reverse solute flux for them was reduced. The reverse solute flux and specific reverse solute flux became higher in the order of N > K > P.

A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments (투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석)

  • 전명석
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • A novel methodology on the calculations of osmotic pressure and gradient diffusion coefficient has been provided ill the present study, by applying a succinct numerical analysis on the experimental results. Although both the osmotic pressure and the gradient diffusion coefficient represent a fundamental characteristic in related membrane filtrations such as microfiltration and ultrafiltration, neither theoretical analysis nor experiments can readily determine them. The osmotic pressure of colloidal suspension has been successfully determined from a relationship between the data of the time-dependent permeate flux, their numerical accumulations, and their numerical derivatives. It is obvious that the osmotic pressure is gradually increased, as the particle concentration increases. The thermodynamic coefficient was calculated from the numerical differentiation of the correlation equation of osmotic pressure, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. Finally, the estimated gradient diffusion coefficient, which entirely depends on the particle concentration, was compared to the previous results obtained from the statistical mechanical simulations.

A Numerical Analysis of Direct Contact Membrane Distillation for Hollow Fiber Membrane (중공사형 분리막에 대한 직접접촉식 막분리 공정의 수치해석)

  • Shin, Ho-Chul;Chung, Kun-Yong
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Membrane distillation (MD) is a separation process which higher vapor pressure components are evaporated in mixed liquid solution through hydrophobic membrane with 0.1 or $0.5{\mu}m$ pore size. In this study, direct contact membrane distillation process for hollow fiber module were interpreted numerically using the "COMSOL Multiphysics" software. The variables for the system were temperatures and flow rates of lumen and shell side solutions. The permeate flux increased from 1.0 to $3.8L/m^2{\cdot}hr$ as temperature of the feed solution for lumen increased from 30 to $50^{\circ}C$. However the effect of shell solution temperature on permeate flux was relatively low. Also, the optimum velocity of lumen feed was obtained at 0.15 m/s ($Re_L=135$) by considering MD permeate flux as well as operating pressure loss.

Performance Evaluation of a Closed-Loop Pressure Retarded Membrane Distillation for Brackish Water Desalination and Power Generation (기수담수화와 전력 생산을 위한 폐루프형 압력 지연식 막 증류 공정의 성능 평가)

  • Cho, Gyu Sang;Lee, Jun-Seo;Park, Kiho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.525-534
    • /
    • 2022
  • In this study, we investigated the applicability and optimal operating strategy of a closed-loop pressure retarded membrane distillation (PRMD) for brackish water desalination. For effective operation with net power generation, high temperature of heat source over 90 ℃ and feed flow rate at 0.6 kg/s are recommended. At 3 g/L of feed concentration, the average permeate flux and net energy density showed 8.04 kg/m2/hr and 2.56 W/m2, respectively. The average permeate flux and net energy density were almost constant in the range of feed concentration from 1 to 3 g/L. Compared to the case with seawater feed, the PRMD with brackish water feed showed higher average permeate flux and net energy density. Thus, PRMD application using brackish water feed can be more effective than that using seawater feed in terms of power generation.

Effect of Water-back-flushing Time and Period in Advanced Water Treatment System by Ceramic Microfiltration (세라믹 정밀여과에 의한 고도정수처리 시스템에서 물 역세척 시간 및 주기의 영향)

  • Park, Jin-Yong;Lee, Hyuk-Chan;Cho, Jae-Hyeong
    • Membrane Journal
    • /
    • v.18 no.1
    • /
    • pp.26-34
    • /
    • 2008
  • In this study, periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in advanced water treatment system by ceramic microfiltration. We investigated effect of water-back-flushing period (FT) and time (BT), and tried to find the optimal operating conditions. BT was fixed at 3 sec and FT was changed in $30{\sim}120$ sec to inspect effect of FT. Also, FT was fixed at 120 sec and BT was changed as $3{\sim}12$ sec at experiment of BT effect. At both two experiments, TMP was fixed at 1.52 bar, water-back-flushing pressure at 0.98 bar, feed flow rate at 0.5 L/min, and feed water temperature at $20^{\circ}C$. As the result, optimal FT was 30 sec at fixed BT 3 sec in our experimental range. It means that the more frequent back-flushing was the more effective to reduce membrane fouling. However, there were not large effects of FT due to a short BT. Then, increasing BT at fixed FT 120 sec could decrease resistance of membrane fouling ($R_f$) and increase permeate flux (J) and dimensionless permeate flux ($J/J_o$), and the most total permeate volume ($V_T$) could be produced at the maximum BT 12 sec.

Performance of fouled NF membrane as used for textile dyeing wastewater

  • Abdel-Fatah, Mona A.;Khater, E.M.H.;Hafez, A.I.;Shaaban, A.F.
    • Membrane and Water Treatment
    • /
    • v.11 no.2
    • /
    • pp.111-121
    • /
    • 2020
  • The fouling of Nanofiltration membrane (NF) was examined using wastewater containing reactive black dye RB5 of 1500 Pt/Co color concentrations with 16890 mg/l TDS collected from El-alamia Company for Dying and Weaving in Egypt. The NF-unit was operated at constant pressure of 10 bars, temperature of 25℃, and flowrate of 420 L/min. SEM, EDX, and FTIR were used for fouling characterization. Using the ROIFA-4 program, the total inorganic fouling load was 1.07 mM/kg present as 49.3% Carbonates, 10.1% Sulfates, 37.2% Silicates, 37.2% Phosphates, and 0.93% Iron oxides. The permeate flux, recovery, salt rejection and mass transfer coefficients of the dye molecules were reduced significantly after fouling. The results clearly demonstrate that the fouling had detrimental effect on membrane performance in dye removal, as indicated by a sharp decrease in permeate flux and dye recovery 68%. The dye mass transfer coefficient was dropped dramatically by 34%, and the salt permeability increased by 14%. In this study, all the properties of the membrane used and the fouling that caused its poor condition are identified. Another study was conducted to regeneration fouled membrane again by chemical methods in another article (Abdel-Fatah et al. 2017).

Removal of VOCs from Water by Vapor Permeation through PU/PDMS Membrane (PU/PDMS 막을 이용한 증기투과공정에 의한 물로부터 휘발성 유기화합물 제거)

  • 임지원;남상용;김영진;천세원
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.157-165
    • /
    • 2004
  • PU/PDMS(Poly urethane/poly(dimethylsiloxane ) membranes were prepared to enhance chemical resistance over VOCs from 4,4'-diphenylmethane diisocyanate (MDI), poly(dimethylsiloxane) (PDHS). Swelling characteristics and vapor permeation performance of toluene, 1,2-dichloroethane, hexane through PU/PDMS membrane with various feed VOCs concentration were investigated. Swelling ratio of VOCs showed tendency of Toluene > 1,2-dichloroethane > hexane. Fiux of toluene and 1,2-dichloroethane increased with increasing fled concentration while the flux of hexane maintained with increasing feed. VOCs concentration in permeate maintained 50 wt% oi concentration due to high affinity of PU/PDHS membranes to VOCs.

Permeation Characteristics of the Tubular Membrane with Continuous Air Cleaning System (연속식 공기세정 관형막 투과특성)

  • Park, Mi Ja;Chung, Kun Yong
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.185-188
    • /
    • 2013
  • This study was carried out for microfiltration tubular membrane module equipped with self-designed air injection nozzle in order to determine the permeate flux due to the effect of membrane fouling reduction. The 0.1 wt% yeast particle solution was used as a feed solution and permeation tests were performed for the cases with and without air injection. Permeation fluxes were measured and analyzed to examine the effect of membrane fouling reduction. While the permeation flux without air injection decreased continuously, that with air injection was improved more than 30 percent than that of no air injection case.

Application of ANN modeling for oily wastewater treatment by hybrid PAC-MF process

  • Abbasi, Mohsen;Rasouli, Yaser;Jowkar, Peyman
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.285-292
    • /
    • 2018
  • In the following study, Artificial Neural Network (ANN) is used for prediction of permeate flux decline during oily wastewater treatment by hybrid powdered activated carbon-microfiltration (PAC-MF) process using mullite and mullite-alumina ceramic membranes. Permeate flux is predicted as a function of time and PAC concentration. To optimize the networks performance, different transfer functions and different initial weights and biases have been tested. Totally, more than 850,000 different networks are tested for both membranes. The results showed that 10:6 and 9:20 neural networks work best for mullite and mullite-alumina ceramic membranes in PAC-MF process, respectively. These networks provide low mean squared error and high linearity between target and predicted data (high $R^2$ value). Finally, the results present that ANN provide best results ($R^2$ value equal to 0.99999) for prediction of permeation flux decline during oily wastewater treatment in PAC-MF process by ceramic membranes.