• Title/Summary/Keyword: permeable block

Search Result 58, Processing Time 0.027 seconds

A Study on the Properties of Hwangto Permeable Block Using Ferro Nickel Slag (페로니켈슬래그를 혼입한 황토투수블럭 물성에 관한 연구)

  • Kim, Soon-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.607-618
    • /
    • 2022
  • This study involves the development of a Hwangto permeable block for rainwater storage tanks. The permeable products that form continuous voids between Hwangto binders and aggregates are fine milled slag powder, which is an industrial by-product generated during the production of Hwangto and iron, and ferro nickel slag. The properties of Hwangto permeable blocks were studied using recycled resource aggregates. The target quality is based on KSF 2394. The Hwangto permeable block for a rainwater storage tank is made of water-permeable material, and the permeability of the Hwangto permeable block itself is 0.1mm/sec or higher, with a physical performance of over 5.0MPa in flexural strength and over 20.0MPa in compressive strength. The physical properties of Hwangto permeable block for rainwater storage tanks were researched and developed. In order to prevent flooding due to heavy rain in summer and the urban heat island phenomenon due to depletion of ground water, continuous pores are formed in the block to secure a permeability function to prevent rainwater from accumulating in the pavement of the floor, and to prevent slippage for comfortable and safe storage.

Surface Image Analysis for Evaluating Porosity and Permeability Coefficient of Permeable Concrete Block (투수 콘크리트 블록 공극률 및 투수계수 평가를 위한 표면 이미지 분석 기법 개발)

  • Jo, Sangbeom;Son, Younghwan;Kim, Donggeun;Jeon, Jihun;Kim, Taejin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.2
    • /
    • pp.47-57
    • /
    • 2023
  • The increase of impermeable area ratio is causing hydrologic cycle problems in urban areas and groundwater depletion in rural areas, permeable pavements are getting attention to expand permeable areas. The performance of the permeable concrete block pavement, which is part of the permeable pavement, is greatly affected by the porosity. In addition, the permeability coefficient is a major factor when designing permeable concrete block pavement. Existing porosity and permeability test methods have problems such as uneconomical or poor field applicability. The object of this study was to develop a methodology for evaluating porosity and permeability coefficient using a surface image of a permeable concrete block. Specimens are manufactured with various porosity ranges and porosity and permeability tests are performed. After surface image preprocessing, normalization and binarization methods were compared. Through this, the method with the highest correlation with the lab test result was determined. From the results, the PDR (pore determined ratio) was obtained. Simple linear regression analysis is performed with PDR and lab test results. The results showed a high correlation of R2 more than 0.8, and the errors were also low.

Strength Properties of Permeable Block Using Basalt Waste Rock (현무암 폐석을 활용한 투수블록의 강도 특성)

  • Jeon, Eun-Yeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.189-190
    • /
    • 2023
  • Environmental pollution problems are occurring in Jeju Island due to negative treatment of basalt waste. Measures for various approaches and utilization measures are needed to solve the problem of waste stones that occur during basalt processing. In this study, the Properties of permeable blocks with basalt were identified and the applicability and functionality as building materials were reviewed. This experiment is basic data for evaluating the functionality of the permeable block by manufacturing permeable blocks using basalt waste stones and analyzing flexural strength and compressive strength. The higher the basalt waste stone replacement rate, the lower the flexural strength and compressive strength, but it was judged that 20% of basalt waste stone replacement rate that satisfies the minimum flexural strength (4.0MPa) stipulated in KS F 4419 was appropriate. In addition, additional permeability coefficient and absorption rate experiments tended to increase as the basalt lung stone replacement rate increased. Therefore, it is judged that the permeable block using basalt waste stone is superior to the existing permeable block.

  • PDF

Strength properties of concrete permeability blocks using polymer PVA (폴리머 PVA 사용에 따른 콘크리트 투수블록의 강도 특성)

  • Lee, Won-Gyu;Pyeon, Su-Jeong;Yoo, Byeong-Yong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.29-30
    • /
    • 2018
  • Recent impervious pavements on roads and sidewalks cause rainwater to not penetrate into the ground, deplete groundwater, or flood the rivers, causing urban flood damage. In order to solve these problems, the amount of installed pitcher block is increasing, but the existing pitcher block is made with cement base and causes many problems. In the cement permeable block, the efflorescene phenomenon occurs due to the acid component, and the pore of the permeable block is clogged and the permeability is lost. As a result, the service life of the pitcher block is shortened and the replacement period is shortened. The purpose of this study is to analyze the basic properties of polymer concrete by replacing cement with polymer in order to solve the problem of cement - based concrete permeable block.

  • PDF

Elastic Modulus and Layer Coefficient of Permeable Block Pavements Based on Plate Load Tests (평판재하시험을 통한 투수 블록포장의 탄성계수 및 상대강도계수 산정)

  • Choi, Yong-Jin;Oh, Jeong-Ho;Han, Shin-In;Ahn, Jaehun;Shin, Hyun-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.75-80
    • /
    • 2017
  • Permeable block pavement systems are widely used to relieve the flood and enhance water circulation. However, domestic design method has not yet been established well. Although AASHTO 93 flexible pavement design method is applied as a structural design method outside the country, there is a lack of information on layer coefficient of the permeable pavement materials, which makes it difficult to apply the design to various materials. Therefore, in this study, a method of calculating the layer coefficient of permeable block pavement materials by plate load test was presented and the layer coefficient of a permeable block pavement in a testbed was evaluated. Overall, calculated layer coefficient of open graded aggregate and permeable block pavement surface layer were similar to those of the conventional values. The presented method may be used to evaluate layer coefficients of permeable block pavements for design.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Performance Evaluation of Eco-friendly Permeable Block Using Basalt Waste Rock (현무암 폐석을 이용한 친환경 투수블록의 성능평가)

  • Sang-Soo Lee;Hyeong-Soon Kwon;Jae-Hwan Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.299-306
    • /
    • 2023
  • Environmental pollution problems are occurring due to the negative treatment of basalt waste in Jeju Island. This study identifies the characteristics of permeable block with basalt with physical and chemical adsorption mechanisms and examines their applicability and functionality as building materials. This experiment is basic data for evaluating the functionality of the permeable block by analyzing flexural strength, compressive strength, permeability coefficient, carbon dioxide, and fine dust adsorption rate by producing a permeable block using a basalt waste rock. As the basalt waste stone replacement rate increased, the flexural strength and compressive strength tended to decrease, and as the replacement rate increased, the water permeability coefficient, absorption rate, carbon dioxide, and fine dust adsorption rate tended to increase. Therefore, it is judged that the permeable block using the basalt waste rock is superior to the existing permeable block.

Adsorption Properties of Permeable Block according to the Replacement Ratio of TiO2 (TiO2를 치환율에 따른 투수블록의 흡착 특성)

  • Lee, Hye-Eun;Yoo, Jae-Gyun;Lee, Sang Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.74-75
    • /
    • 2021
  • In the recent 2017 annual average fine dust concentration (PM2.5) statistics released by the Organization for Economic Cooperation and Development (OECD), Korea has a high concentration of 25.14㎍/m3, which is about twice the average of 12.5㎍/m3 in OECD countries. Fine dust (PM2.5) is the main source of secondary pollutant production by the reaction of primary pollutants emitted from automobiles and thermal power plants, mainly composed of sulfates, nitrates, and organic carbon. The permeable block is an eco-friendly product that prevents rainwater from collecting on the surface of the road because it does not penetrate the groundwater properly, and is widely constructed on sidewalks or parking lots to recharge groundwater in case of rain. In addition, the pavement of the permeable block is a fundamental solution to reduce pollution by preventing rainwater from flowing into the stream, and it also has the advantage of easy replacement as well as low replacement costs. Therefore, this study was a basic experiment to produce permeable blocks mixed with TiO2 and diatomite to improve indoor air quality, and intended to analyze the flexural strength and compressive strength of permeable blocks mixed with TiO2.

  • PDF

Manufacturing Water Permeable Block Using Loess, Clay and Waste Sewage Sludge (황토, 점토 및 하수처리오니를 이용한 투수블록 제조)

  • Kim, Jong Dae;Han, Sang Moo;Jeong, Byung Gon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.476-481
    • /
    • 2015
  • Water permeable block was manufactured using waste sewage sludge, loess and clay for the purpose of recycling waste sludge due to the prohibition of waste sludge ocean dumping. Experiments for determining optimum mixing ratio was conducted by changing sludge content in water permeable block as 5~20%. In respect of compressive strength, $1,600N/cm^2$ ($163.3kg/cm^2$) was obtained when the mixing ratio of sludge : loess : clay were maintained by 5% : 65% : 30%, 10% : 65% : 25% and 15% : 65% : 20%, respectively. These mean that relatively high compressive strength can be obtained when the sludge content is maintained 5, 10, 15% at the 65% of loess content. In terms of water permeability and absorption rate, the higher values can be obtained as the sludge content increases. The optimum mixing ratio of sludge : loess : clay came out to be 15% : 65% : 20% when water permeability, absorption and strength were considered altogether, which matches the result observed by an electron microscope. The heavy metal leaching test result of the prepared permeable block appeared to satisfy the environmental standard in the content of Cd, Cu, Pb and As.

Study on Physical Properties of Permeable Concrete Block According to Vibration Time (진동다짐시간에 따른 투수콘크리트 블록의 물리적 특성에 관한 연구)

  • Kim, Hwang-Hee;Kim, Choon-Soo;Kang, Su-Man;Sun, Joung-Soo;Park, Chan-Gi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.303-304
    • /
    • 2010
  • In the study, the vibration time affects the properties of permeable concrete block to interpret and improving the performance of permeable concrete block to provide preliminary data for the said purpose.

  • PDF