• 제목/요약/키워드: permanent magnet wheel

검색결과 65건 처리시간 0.025초

Improved Direct Torque Control of Permanent Magnet Synchronous Electrical Vehicle Motor with Proportional-Integral Resistance Estimator

  • Hartani, Kada;Miloud, Yahia;Miloudi, Abdellah
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권3호
    • /
    • pp.451-461
    • /
    • 2010
  • Electric vehicles (EVs) require fast torque response and high drive efficiency. This paper describes a control scheme of fuzzy direct torque control of permanent magnet synchronous motor for EVs. This control strategy is extensively used in EV application. With direct torque control (DTC), the electromagnetic torque and stator flux can be estimated using the measured stator voltages and currents. The estimation depends on motor parameters, except for the stator resistance. The variation of stator resistance due to changes in temperature or frequency downgrades the performance of DTC, which is controlled by introducing errors in the estimated flux linkage vector and the electromagnetic torque. Thus, compensation for the effect of stator resistance variation becomes necessary. This work proposes the estimation of the stator resistance and its compensation using a proportional-integral estimation method. An electronic differential has been also used, which has the advantage of replacing loose, heavy, and inefficient mechanical transmission and mechanical differential with a more efficient, light, and small electric motors that are directly coupled to the wheels through a single gear or an in-wheel motor.

영구자석을 이용한 콘크리트 궤도상의 쇠가루 포집장치 특성 분석 연구 (Analysis of Iron-filings Trapping Characteristics on Concrete Slab Track using Permanent Magnet)

  • 박찬배;이주
    • 한국철도학회논문집
    • /
    • 제14권4호
    • /
    • pp.348-353
    • /
    • 2011
  • 레일을 궤도회로로 이용하는 신호 설비의 경우, 레일 주변에 쌓이는 쇠가루는 궤도회로 상에 이상 신호유발의 원인이 되기도 한다. 차량의 곡선 주행 구간에서는 레일과 차륜의 마찰이 심하여 차륜의 마모에 의한 쇠가루가 발생하게 되고, 이렇게 발생한 레일 상의 쇠가루로 인해 이상 신호가 종종 발생하기 때문에 지하철 운영사의 쇠가루 제거를 위한 방안 마련이 시급한 실정이다. 본 연구에서는 콘크리트 궤도 상 레일 주변의 쇠가루를 포집하기 위한 영구자석 적용 마그넷 포집장치를 소개하였다. 또한 기본 설계 및 수치 해석적 기법을 이용하여 마그넷 포집장치의 다양한 특성 분석을 수행하였으며, 이를 통하여 콘크리트 궤도상의 쇠가루 포집을 위한 마그넷 포집장치의 실제 상용노선 차량에의 적용 가능성을 검토하였다.

수전동 휠체어용 모터 개발 (Development of In-wheel Motor for Power Add-on Drive Wheelchair)

  • 홍응표;박세훈;오홍석;류제청;문무성
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.992-999
    • /
    • 2011
  • The recent power add-on drive wheelchairs (PADWs) provide greater physical activity, are easier to transport, and may be an excellent alternative for the typical manual or electric wheelchairs. The development of in-wheel motor for a PADW is the principal issues. In this paper, design, implementation, and testing of the permanent magnet synchronous motor (PMSM) for a PADW are presented. To design output power and torque of the motor, the equation of motion has been investigated. The design parameters were calculated and the dimension and shape of the motor which was limited by the In-wheel mechanism of the PADW were done by applying FEM and optimal design technique. The prototype of the motor mentioned above was fabricated with precise machining and assembling. Then the motor tested on dynamometer and the measured results of the motor were verified by comparing the design results. The fabricated motor was 80 mm in length with a diameter of 110 mm and small enough to be attached the driving unit of the PADW.

독립 차륜형 전동기 설계를 통한 횡 변위 제어에 관한 연구 (A Study on Lateral Displacement Control by Design of Independent-wheel Type Machine)

  • 안한웅;박현종;원준희;조수연;이형우;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.645-646
    • /
    • 2015
  • The conventional wheelsets has disadvantages of potential oscillatory instability. In the paper, a design of the permanent magnet synchronous machine of independent-wheel type for near-surface is performed. Also, the lateral displacement control algorithm is proposed. The subcale bogie can maintain the centering by this algorithm. The design of the machine is verified by BEMF. And the validity and usefulness of the lateral displacement control algorithm is verified by experimental results.

  • PDF

Durable and Sustainable Strap Type Electromagnetic Harvester for Tire Pressure Monitoring System

  • Lee, Soobum;Kim, Dong-Hun
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.473-480
    • /
    • 2013
  • A new concept design of electromagnetic energy harvester is proposed for powering a tire pressure monitoring sensor (TPMS). The thin coil strap is attached on the circumferential surface of a rim and a permanent magnet is placed on the brake caliper system. When the wheel rotates, the relative motion between the magnet and the coil generates electrical energy by electromagnetic induction. The generated energy is stored in a storage unit (rechargeable battery, capacitor) and used for TPMS operation and wireless signal transmission. Innovative layered design of the strap is provided for maximizing energy generation. Finite Element Method (FEM) and experiment results on the proposed design are compared to validate the proposed design; further, the method for design improvement is discussed. The proposed design is excellent in terms of durability and sustainability because it utilizes the everlasting rotary motion throughout the vehicle life and does not require material deformation.

영구자석바퀴를 이용한 벽면 이동로봇의 설계치침에 의한 이동체 개발 (Development of mobile vehicle designed by the guideline of wall-climbing mobile robot using permanent magnetic wheels)

  • 한승철;이화조;김은찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1676-1681
    • /
    • 2003
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline. and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application. as the attaching force ortho vehicle can be affected by its posture.

  • PDF

영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침) (Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline))

  • 한승철;이화조;김은찬
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.

영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 2- 이동체 설계) (Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 2- Design of Mobile Vehicle))

  • 한승철;이화조;김은찬
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.77-84
    • /
    • 2004
  • The attachment of mobile vehicle is necessary for the automated operation on the inclined or vertical walls of steel structures. Since the vehicle requires attaching devices additionally, its overall efficiency can be reduced by the devices. Therefore, external shapes of mobile vehicles have to be researched to give the effective movement on the vertical face. For the design of mobile vehicle, the guideline has been derived from the modeling of wall-climbing, so that the vehicle should have a specific external shape for vertical movement due to the gravitational force. Hence, some adequate arrangement of attaching device to the mobile vehicle has been presented for the effective movement. In the experiments with four permanent magnetic wheels, a plausible result was achieved as a vertical attaching force of 185.2(N), a friction force of 153.8(N) and a curvature radius of 1.4m. The mobile vehicle should be modified according to the proposed design guideline, and then it could be applied to a specific operation as an appropriate external shape. Also, Further research is recommended on an optimal posture and a moving method in a specific application, as the attaching force of the vehicle can be affected by its posture.

속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법 (The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer)

  • 손태식;이용균;김학원;조관열;목형수
    • 전력전자학회논문지
    • /
    • 제16권2호
    • /
    • pp.130-136
    • /
    • 2011
  • 본 논문은 전기 스쿠터용 영구자석 동기 전동기(PMSM)의 토크제어 알고리듬을 제안한다. 전기 스쿠터용 인휠(In-wheel) 모터는 기구적으로 고 분해능의 회전자 위치검출 센서인 레졸버나 엔코더를 장착하기 어려워 저 분해능의 홀 센서를 사용한다. 본 논문은 홀 센서를 갖는 영구자석동기전동기의 벡터제어를 위하여 속도관측기를 사용하여 회전자의 속도 및 고분해능의 위치정보를 관측한다. 초기 기동시에는 일반적인 120도 통전방식의 BLDC 운전모드로 기동하고, 기동 후에는 벡터제어 방식으로 전환하여 단위 전류 당 최대 토크(Maximum Torque Per Ampere, MTPA) 운전과 약자속(Flux weakening) 제어를 수행한다. 제안한 알고리듬은 전기스쿠터의 장착실험을 통하여 검증하였다.

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive

  • Ahmad, M.Z.;Sulaiman, E.;Kosaka, T.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.265-272
    • /
    • 2015
  • In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.