Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.3.265

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive  

Ahmad, M.Z. (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia)
Sulaiman, E. (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia)
Kosaka, T. (Dept. of Electrical and Computer Engineering, Nagoya Institute of Technology)
Publication Information
Abstract
In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.
Keywords
dual excitation flux; outer-rotor; flux switching machine; Direct drive;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Bucha, Journal of Atmospheric and Terrestrial Physics 53, 1161 (1991).   DOI   ScienceOn
2 J. King, The King Review of low-carbon cars - Part II: Recommendations for action (March 2008). Available online: www.hm-treasury.gov.uk/king.
3 Sung-Il Kim, Sunghyuk Park; Taesang Park, Jinwoo Cho, Wonho Kim, and Seongtaek Lim, IEEE Trans. Ind. Electron. 61, 5763 (2014).   DOI   ScienceOn
4 C. C. Chan, IEEE Journals & Magazines 81, 1202 (1993).
5 Y. P. Yang and D. S. Chuang, IEEE Trans. Magn. 43, 51 (2007).   DOI   ScienceOn
6 Wu, L. Song, and S. Cui, IEEE Trans. Magn. 43, 438 (2007).   DOI   ScienceOn
7 K. M. Rahman, N. R. Patel, T. G. Ward, J. M. Nagashima, F. Caricchi, and F. Crescimbini, IEEE Trans. Ind. Appl. 42, 1185 (2006).   DOI   ScienceOn
8 Z. Q. Zhu and D. Howe, Proc. IEEE 95, 746 (2007).   DOI   ScienceOn
9 D. Dorrell, L. Parsa, and I. Boldea, IEEE Trans. Ind. Electron. 61, 5693 (2014).   DOI   ScienceOn
10 K. T. Chau, C. C. Chan, and Chunhua Liu, IEEE Trans. Ind. Electron. 55, 2246 (2008).
11 Y. Amara, E. Hoang, M. Gabsi, and M. Lecrivain, Euro. Trans. Electron. Power 15, 497 (2005).   DOI   ScienceOn
12 C. Pollock, H. Pollock, R. Borron, J. R. Coles, D. Moule, A. Court, and R. Sutton, IEEE Trans. Ind. Appl. 42, 1177 (2006).   DOI   ScienceOn
13 M. J. Jin, Y. Wang, J. X. Shen, P. C. K. Luk, W. Z. Fei, and C. F. Wang, IET Electric Power Appl. 4, 647 (2010).   DOI   ScienceOn
14 H. Pollock, C. Pollock, R. T. Walter, and B. V. Gorti, Proc. IEEE Ind. Appl. Soc. Annu. Meeting (2003) pp. 1451-1457.
15 E. Sulaiman, T. Kosaka, and N Matsui, IEEE Trans. Magn. 47, 4453 (2011).   DOI   ScienceOn
16 J. T. Chen and Z. Q. Zhu, IEEE Trans. Energy Conversion 25, 293 (2010).   DOI   ScienceOn
17 Y. Wang and Z. Deng, IEEE Trans. Magn. 48, 2518 (2012).   DOI   ScienceOn
18 Y. Tang, J. J. H. Paulides, T. E. Motoasca, and E. A. Lomonova, IEEE Trans. Magn. 48, 3583 (2012).   DOI   ScienceOn
19 E. Sulaiman, T. Kosaka, and N. Matsui, Renewable and Sustainable Energy Reviews 34, 517 (2014).   DOI   ScienceOn
20 Y. Wang, M. J. Jin, J. Shen, W. Z. Fei, and P. C. K. Luk, Energy Conversion Congress and Exposition (ECCE) (2010) pp. 1723-1730.
21 W. Fei, P. Chi K. Luk, J. X. Shen, Y. Wang, and M. Jin, IEEE Trans. Ind. Appl. 48, 1496 (2012).   DOI   ScienceOn
22 M. Z. Ahmad, E. Sulaiman, Z. A. Haron, and F. Khan, Applied Mechanics and Materials Journal 660, 836 (2014).   DOI