DOI QR코드

DOI QR Code

Analysis of High Torque and Power Densities Outer-Rotor PMFSM with DC Excitation Coil for In-Wheel Direct Drive

  • Ahmad, M.Z. (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia) ;
  • Sulaiman, E. (Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia) ;
  • Kosaka, T. (Dept. of Electrical and Computer Engineering, Nagoya Institute of Technology)
  • Received : 2015.03.26
  • Accepted : 2015.08.19
  • Published : 2015.09.30

Abstract

In recent years, flux switching machines (FSMs) have been an attractive research topic owing to their tremendous advantages of robust rotor structure, high torque, and high power capability suitable for intensive applications. However, most of the investigations are focusing on the inner-rotor structure, which is incongruous for direct drive applications. In this study, high torque and power densities of a new 12S-14P outer-rotor permanent magnet (PM) FSM with a DC excitation coil was investigated based on two-dimensional finite element analysis for in-wheel direct drive electric vehicle (EV). Based on some design restrictions and specifications, design refinements were conducted on the original design machine by using the deterministic optimization approach. With only 1.0 kg PM, the final design machine achieved the maximum torque and power densities of 12.4 Nm/kg and 5.93 kW/kg, respectively, slightly better than the inner-rotor HEFSM and interior PM synchronous machine design for EV.

Keywords

References

  1. V. Bucha, Journal of Atmospheric and Terrestrial Physics 53, 1161 (1991). https://doi.org/10.1016/0021-9169(91)90067-H
  2. J. King, The King Review of low-carbon cars - Part II: Recommendations for action (March 2008). Available online: www.hm-treasury.gov.uk/king.
  3. Sung-Il Kim, Sunghyuk Park; Taesang Park, Jinwoo Cho, Wonho Kim, and Seongtaek Lim, IEEE Trans. Ind. Electron. 61, 5763 (2014). https://doi.org/10.1109/TIE.2014.2304697
  4. C. C. Chan, IEEE Journals & Magazines 81, 1202 (1993).
  5. Y. P. Yang and D. S. Chuang, IEEE Trans. Magn. 43, 51 (2007). https://doi.org/10.1109/TMAG.2006.886153
  6. Wu, L. Song, and S. Cui, IEEE Trans. Magn. 43, 438 (2007). https://doi.org/10.1109/TMAG.2006.887705
  7. K. M. Rahman, N. R. Patel, T. G. Ward, J. M. Nagashima, F. Caricchi, and F. Crescimbini, IEEE Trans. Ind. Appl. 42, 1185 (2006). https://doi.org/10.1109/TIA.2006.880886
  8. Z. Q. Zhu and D. Howe, Proc. IEEE 95, 746 (2007). https://doi.org/10.1109/JPROC.2006.892482
  9. D. Dorrell, L. Parsa, and I. Boldea, IEEE Trans. Ind. Electron. 61, 5693 (2014). https://doi.org/10.1109/TIE.2014.2307839
  10. K. T. Chau, C. C. Chan, and Chunhua Liu, IEEE Trans. Ind. Electron. 55, 2246 (2008).
  11. Y. Amara, E. Hoang, M. Gabsi, and M. Lecrivain, Euro. Trans. Electron. Power 15, 497 (2005). https://doi.org/10.1002/etep.85
  12. C. Pollock, H. Pollock, R. Borron, J. R. Coles, D. Moule, A. Court, and R. Sutton, IEEE Trans. Ind. Appl. 42, 1177 (2006). https://doi.org/10.1109/TIA.2006.880842
  13. M. J. Jin, Y. Wang, J. X. Shen, P. C. K. Luk, W. Z. Fei, and C. F. Wang, IET Electric Power Appl. 4, 647 (2010). https://doi.org/10.1049/iet-epa.2009.0176
  14. H. Pollock, C. Pollock, R. T. Walter, and B. V. Gorti, Proc. IEEE Ind. Appl. Soc. Annu. Meeting (2003) pp. 1451-1457.
  15. E. Sulaiman, T. Kosaka, and N Matsui, IEEE Trans. Magn. 47, 4453 (2011). https://doi.org/10.1109/TMAG.2011.2140315
  16. J. T. Chen and Z. Q. Zhu, IEEE Trans. Energy Conversion 25, 293 (2010). https://doi.org/10.1109/TEC.2009.2032633
  17. Y. Wang and Z. Deng, IEEE Trans. Magn. 48, 2518 (2012). https://doi.org/10.1109/TMAG.2012.2196801
  18. Y. Tang, J. J. H. Paulides, T. E. Motoasca, and E. A. Lomonova, IEEE Trans. Magn. 48, 3583 (2012). https://doi.org/10.1109/TMAG.2012.2199100
  19. E. Sulaiman, T. Kosaka, and N. Matsui, Renewable and Sustainable Energy Reviews 34, 517 (2014). https://doi.org/10.1016/j.rser.2014.03.030
  20. Y. Wang, M. J. Jin, J. Shen, W. Z. Fei, and P. C. K. Luk, Energy Conversion Congress and Exposition (ECCE) (2010) pp. 1723-1730.
  21. W. Fei, P. Chi K. Luk, J. X. Shen, Y. Wang, and M. Jin, IEEE Trans. Ind. Appl. 48, 1496 (2012). https://doi.org/10.1109/TIA.2012.2210009
  22. M. Z. Ahmad, E. Sulaiman, Z. A. Haron, and F. Khan, Applied Mechanics and Materials Journal 660, 836 (2014). https://doi.org/10.4028/www.scientific.net/AMM.660.836

Cited by

  1. A New Switched Flux Machine Employing Alternate Circumferential and Radial Flux (AlCiRaF) Permanent Magnet for Light Weight EV vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.537
  2. Electromagnetic Structure Design Study of Fault-Tolerant Interior Permanent Magnet Machines for Electric Vehicles Using Harmonic Order Shaping vol.21, pp.4, 2016, https://doi.org/10.4283/JMAG.2016.21.4.561