• 제목/요약/키워드: permanent magnet synchronous motor(PMSM)

검색결과 393건 처리시간 0.025초

자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법 (Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM)

  • 박병준;구본관
    • 전기학회논문지
    • /
    • 제68권3호
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Compensation of Position Error due to Amplitude Imbalance in Resolver Signals

  • Hwang, Seon-Hwan;Kwon, Young-Hwa;Kim, Jang-Mok;Oh, Jin-Seok
    • Journal of Power Electronics
    • /
    • 제9권5호
    • /
    • pp.748-756
    • /
    • 2009
  • This paper presents a compensation algorithm for position error due to an amplitude imbalance between resolver output signals. Resolvers are typically used to obtain absolute position information for motor drive systems in severe environments. Position error is caused by an amplitude imbalance of the resolver output signals. As a result, the d- and q-axis currents of synchronous reference frame have periodic ripples in the stator fundamental frequency in permanent magnet synchronous motor (PMSM) drive systems. Therefore, this paper proposes a compensation algorithm to reduce the position error generated by the amplitude imbalance. The proposed method does not require any additional hardware, and reduces computation time with a simple integral operation according to rotor position. In addition, the position error can be directly compensated for by the estimated position error. The effectiveness of the proposed compensation algorithm is verified through several simulations and experiments.

DTC-PWM 방식에 의한 PMSM의 속도 제어 기법 (Speed Control of PMSM using DTC-PWM Approach)

  • 이동희;추영배
    • 전력전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.268-277
    • /
    • 2009
  • 본 논문은 DTC-PWM을 적용한 PMSM의 속도제어 방식을 제안한다. 제안된 DTC-PWM은 기존의 DTC 방식과 PWM을 결합한 방식으로 스위칭 신호를 발생하는 구조를 가진다. 제안된 방식에서 실제 토크는 기존의 DTC 방식과 같이 추종되지만, 스위칭 신호는 토크 오차와 제어규칙에 따라 PWM 방식으로 제어한다. 토크와 자속을 제어하기 위한 스위칭 신호는 하나의 유효전압벡터와 영전압벡터로 구성되는 비대칭 스위칭 방식이 적용된다. 제안된 방식은 SVPWM과 같이 복잡한 계산없이 간단한 PWM의 연산으로 제어기를 구성하여 토크와 자속을 연속적으로 제어할 수 있다. 제안된 방식은 PMSM의 속도 제어 실험을 통하여 그 성능을 검증하였다.

Analysis on Harmonic Loss of IPMSM for the Variable DC-link Voltage through the FEM-Control Coupled Analysis

  • Park, Hyun Soo;Jeung, Tae Chul;Lee, Jae Kwang;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.225-229
    • /
    • 2017
  • This paper describes the loss analysis based on load conditions of the air conditioning compressor motors using variable dc-link voltage. The losses of PMSM (Permanent Magnet Synchronous Motor) should be analyzed by the PWM (Pulse Width Modulation) output of inverter. The harmonic loss by the PWM cannot consider that using the current source analysis of the inverter. In addition, when the voltage of dc-link is variable with the condition of variable speed and load conditions in motor, the losses of motor are also changeable, however it is hard to analyze those losses by only electromagnetic finite element method (FEM). Therefore, this paper proposes the analysis method considering the carrier frequency of the inverter and the varying state of the dc-link voltage through the FEM-control coupled analysis. Using proposed analysis method, additional core loss and eddy current loss of permanent magnet caused by PWM could be analyzed. Finally, the validity of the proposed analysis method is verified through the comparison the result of coupled analysis with experiment.

PMSM 전류제어기의 속응성 향상에 관한 연구 (A Study of Improvement on the Quickness of Current controller for Permanent Magnet Synchronous Motor)

  • 조수억;이정환;김철우
    • 조명전기설비학회논문지
    • /
    • 제21권8호
    • /
    • pp.136-143
    • /
    • 2007
  • 개선된 지령치 변경부를 가지는 전류제어기는 과도 상태에서의 빠른 응답성과 정상 상태에서의 고정밀도를 가진다. 이 논문에서는 개선된 지령치 변경부가 빠른 과도 응답성을 위하여 동기 PI 제어기를 사용하였다. 전류 제어기의 과도 응답특성은 DC 링크 제어 전압의 부족으로 인해 높은 역기전력 영역에서 많은 문제를 가지고 있다. 이 논문은 지령 전압과 한계 전압을 가지는 개선된 지령치 변경부를 제안하였다.

보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기 (An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics)

  • 김홍철;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.

고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어 (PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer)

  • 손주범;김홍렬;서영수;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제16권3호
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.

무급유식 공기압축기 구동을 위한 영구자석 동기 모터의 센서리스 속도제어 (Sensor-less Speed Control of PMSM for Driving Oil-free Air Compressor)

  • 김민호;양오;김윤현
    • 반도체디스플레이기술학회지
    • /
    • 제14권3호
    • /
    • pp.45-50
    • /
    • 2015
  • This paper suggests the sensor-less speed control of PMSM (Permanent Magnet Synchronous Motor) without the position sensor of oil-free air compressor. It estimated d and q axis back electro motive force using Back-EMF (Electro motive Force) observer to control sensor-less speed of PMSM. Also it used the method that tracks the information of rotor position and speed using PLL (Phase Locked Loop) based on estimated d and q axis Back-EMF. The sensor-less speed control of PMSM for oil air compressor application is carried out with the introduced rotor position and speed tracking method. In this paper, the experimental characterization of the sensor-less drive is provided to verify the accuracy of the estimated position and the performance of sensor-less control is analyzed by results obtained from the experiment. Moreover, the potential of PMSM sensor-less drive in industrial application such as compressor drive is also examined.

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

브러쉬없는 영구자석형 동기모터의 관측자 구성에 관한 연구 (A Study on the Observer Design for Brushless Permanent-Magnet Synchronous Motor)

  • 이준성;이제희;양남열;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.39-42
    • /
    • 1994
  • The application of speed or position control technique in AC drives demands accurate position and velocity feedback information. Generally, resolver and absolute encoders are used as a velocity or position sensor. But they increase cost and when the sampling frequency is faster than sensoer's output frequency we can't Set exact information. In order to solve this problem this thesis proposes a speed and a position observer design for Permanent-Magnet Synchronous Motors(PMSM) specialty in low speed drives. Most literatures on this topic design the observer based on the field_oriented d_q model. But in this thesis, a new approach to machine dynamics is proposed. Since it is difficult to design the observer using the nonlinear model, the machine model is here linearlized at the operating point. The observer designed is implemented by software using Intel's 8097 microprocessor and verifies the proper performance of observer by simulation and experiment.

  • PDF