• Title/Summary/Keyword: permanent displacements

Search Result 45, Processing Time 0.021 seconds

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

A Study on the Pullout Behavior of Shear Connectors which Fix the Additional Wall to the PHC-W Piles in the PHC-W Type Permanent Building Retaining Wall (PHC-W 흙막이를 활용한 건축영구벽체에서 PHC-W말뚝과 증설벽체를 합벽시키는 전단연결재의 인발거동에 관한 연구)

  • Jin, Hong-min;Kim, Sung-su;Choi, jeong-pyo;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.107-113
    • /
    • 2017
  • Shear Connector should be used to fix the PHC pile with extension wall in order to utilize PHC-W retaining wall as permanent wall. The pullout behaviours on shear connectors anchored into PHC-W pile were observed as two modes. The first type behaviour showed that after reaching the maximum pullout resistance, the anchorage was broken and shear connector was pulled out abruptly. The second type behaviour showed that even after arriving the maximum pullout resistance, the anchorage was not destroyed and there was a progressive increase in pullout displacement. The maximum pullout resistance of the steel anchor shear connector is larger than that of deformed bar shear connector. The larger the diameter and the longer the embedment length of shear connector, the higher the maximum pullout resistance would be. The pullout displacements corresponding to the maximum pullout resistance of the shear connector showed various ranges regardless of the materials, the diameters and the anchoring lengths. A-D20 shear connectors showed a pull-out displacement of about 8~10 mm. A-D16, D-D19 and D-D16 shear connectors exhibited a pulling displacement of about 14~20 mm, but a pulling displacement of about 6~10 mm when the anchoring lengths were 50 and 80 mm.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Development of Short-span Precast Concrete Panels for Railway Bridge (철도교용 단지간 프리캐스트 콘크리트패널의 개발)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Kim, Ki-Hyun;Youn, Seok-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.545-553
    • /
    • 2016
  • This paper presents experimental static test results of the precast concrete panels developed for short-span concrete bridge deck form. Different from LB-DECK, concrete rib attached to the bottom surface of concrete panel, and Top-bar is not used at the top surface of concrete panel. Number of concrete ribs and cross-section details of concrete rib are determined from the analytical results of parametric study considering the span length and the thickness of concrete bridge decks. Shear rebars are installed at the top surface of concrete panel for composite action between precast concrete panel and cast-in-place concrete. In order to evaluate the safety and the serviceability of the developed short-span concrete panel subjected to design load, static load test is conducted. Three test panels with span length of 1.6m are fabricated, and during the load test displacements, strains and cracks of test panels are measured and final failure modes are investigated. Serviceability of the test panels is evaluated based on the results of displacements, cracking load, and crack width at the design load level. Safety is also evaluated based on the comparison of the ultimate strength and the factored design load of test panels. Based on the test results, it is confirmed the short-span precast concrete panel satisfies the serviceability and safety regulated in design codes. In addition, the range of span length of concrete bridge decks for the short-span concrete panel is discussed.

Development of Permanent Displacement Model for Seismic Mountain Slope (지진 시 산사면의 영구변위 추정식 개발)

  • Lee, Jong-Hoo;Park, Duhee;Ahn, Jae-Kwang;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.4
    • /
    • pp.57-66
    • /
    • 2015
  • Empirical seismic displacement equations based on the Newmark sliding block method are widely used to develop seismic landslide hazard map. Most proposed equations have been developed for embankments and landfills, and do not consider the dynamic response of sliding block. Therefore, they cannot be applied to Korean mountain slopes composed of thin, uniform soil-layer underlain by an inclined bedrock parallel to the slope. In this paper, a series of two-dimensional dynamic nonlinear finite difference analyses were performed to estimate the permanent seismic slope displacement. The seismic displacement of mountain slopes was calculated using the Newmark method and the equivalent acceleration time history. The calculated seismic displacements of the mountain slopes were compared to a widely used empirical displacement model. We show that the displacement prediction is significantly enhanced if the slope is modeled as a flexible sliding mass and the amplification characteristics are accounted for. Regression equation, which uses PGA, PGV, Arias intensity of the ground motion and the fundamental period of soil layer, is shown to provide a reliable estimate of the sliding displacement. Furthermore, the empirical equation is shown to reliably predict the hazard category.

Structural response analysis in time and frequency domain considering both ductility and strain rate effects under uniform and multiple-support earthquake excitations

  • Liu, Guohuan;Lian, Jijian;Liang, Chao;Zhao, Mi
    • Earthquakes and Structures
    • /
    • v.10 no.5
    • /
    • pp.989-1012
    • /
    • 2016
  • The structural dynamic behavior and yield strength considering both ductility and strain rate effects are analyzed in this article. For the single-degree-of-freedom (SDOF) system, the relationship between the relative velocity and the strain rate response is deduced and the strain rate spectrum is presented. The ductility factor can be incorporated into the strain rate spectrum conveniently based on the constant-ductility velocity response spectrum. With the application of strain rate spectrum, it is convenient to consider the ductility and strain rate effects in engineering practice. The modal combination method, i.e., square root of the sum of the squares (SRSS) method, is employed to calculate the maximum strain rate of the elastoplastic multiple-degree-of-freedom (MDOF) system under uniform excitation. Considering the spatially varying ground motions, a new response spectrum method is developed by incorporating the ductility factor and strain rate into the conventional response spectrum method. In order to further analyze the effects of strain rate and ductility on structural dynamic behavior and yield strength, the cantilever beam (one-dimensional) and the triangular element (two-dimensional) are taken as numerical examples to calculate their seismic responses in time domain. Numerical results show that the permanent displacements with and without considering the strain rate effect are significantly different from each other. It is not only necessary in theory but also significant in engineering practice to take the ductility and strain rate effects into consideration.

Analysis of Bicycle Cushion System by using Repulsive Force of Magnetics (영구자석의 척력을 이용한 자전거 완충장치 해석)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • One commercial package for magnetic analysis was used to apply repulsive forces of permanent magnetics to bicycle cushion system. Reliabilities of finite element analysis were acquired by comparing with those of experimental measurements. Equivalent spring stiffnesses corresponding to various sizes of magnetics were implemented into the bicycle dynamic model with three degree of freedom. Input force caused at front and rear wheels due to road unevenness was considered in the dynamic model. Dynamic behaviors were observed in terms of vertical displacements of the rider and the front reach as well as pitching displacement of the mass center when the bicycle ran over half-triangular bump. The methodology suggested in this paper by the finite element analysis and numerical model will be an useful tool for more accurate prediction of cushion design for any vehicle system if magnetic forces are utilized.

A Discussion on the Seismic Coefficient for Gravity Quay Wall Considering Frequency Characteristics of Input Earthquake (입력 지진의 주파수 특성을 고려한 중력식 안벽의 수평 지진계수에 대한 고찰)

  • Lee, Moon Gyo;Ha, Jeong Gon;Park, Heon Joon;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Pseudo-static approach has been conventionally applied for the design of gravity type quay walls. In this method, seismic coefficient ($k_h$), expressed in terms of acceleration due to gravity, is used to convert the real dynamic behavior to an equivalent pseudo-static inertial force for seismic analysis and design. Therefore, the calculation of an appropriate $k_h$ considering frequency characteristics of input earthquake is critical for representing the real dynamic behavior. However, the definitions of $k_h$, which is used for simplified analysis in Korea, focuses only on convenience that is easy to use, and the frequency characteristics of input earthquake are not reflected in the $k_h$ definitions. This paper evaluates the influences of the frequency characteristics of input earthquake on $k_h$ by initially reviewing the $k_h$ definitions in the existing codes of Japan for port structures and then by performing a series of dynamic centrifuge tests on caisson gravity quay walls of different earthquake input motions (Ofunato, Hachinohe). A review of the existing codes and guidelines has shown that the $k_h$ values are differently estimated according to the frequency characteristics of input earthquake. On the other hand, based on the centrifuge tests, it was found that the permanent displacements of wall are more induced when long-period-dominant earthquake is applied.

Two-level control system of toggle braces having pipe damper and rotational friction damper

  • Ata Abdollahpour;Seyed Mehdi Zahrai
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.739-750
    • /
    • 2023
  • This study examines the two-level behavior of the toggle brace damper within a steel frame having a yielding pipe damper and rotational friction damper. The proposed system has two kinds of fuse for energy dissipation in two stages. In this mechanism, rotational friction damper rather than hinged connection is used in toggle brace system, connected to a pipe damper with a limited gap. In order to create a gap, bolted connection with the slotted hole is used, such that first a specific movement of the rotational friction damper solely is engaged but with an increase in movement, the yielding damper is also involved. The performance of the system is such that at the beginning of loading the rotational friction damper, as the first fuse, absorbs energy and with increasing the input load and further movement of the frame, yielding damper as the second fuse, along with rotational friction damper would dissipate the input energy. The models created by ABAQUS are subjected to cyclic and seismic loading. Considering the results obtained, the flexibility of the hybrid two-level system is more comparable to the conventional toggle brace damper. Moreover, this system sustains longer lateral displacements. The energy dissipation of these two systems is modeled in multi-story frames in SAP2000 software and their performance is analyzed using time-history analysis. According to the results, permanent relocations of the roof in the two-level system, in comparison with toggle brace damper system in 2, 5, and 8-story building frames, in average, decrease by 15, 55, and 37% respectively. This amount in a 5-story building frame under the earthquakes with one-third scale decreases by 64%.

Dynamic Fracture Behaviors of Concrete Three-Point Bend Specimens (콘크리트 삼점휨 시험편의 동적 파괴거동)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.689-697
    • /
    • 2002
  • The dynamic loads and load-point displacements of concrete three-point bend (TPB) specimens had been measured. The average crack velocities measured with strain gages were 0.16 ㎜/sec ∼ 66 m/sec. The fracture energy for crack extension was determined from the difference of the kinetic energy for the load-point velocity and the strain energy without permanent deformation from the measure external work. For all crack velocities, there were micro-cracking for 23 ㎜ crack extension, stable cracking for 61 ㎜ crack extension at the maximum strain energy, and then unstable cracking. The unstable crack extension was arrested at 80 ㎜ crack extension except the tests of 66 m/sec crack velocity. The tests less than 13 ㎜/sec crack velocity and faster than 1.9 m/sec showed static and dynamic fracture behaviors, respectively. In spite of much difference of the load and load-point displacement relations for the crack velocities, the crack velocities of dynamic tests did not affect on fracture energy rate during the stable crack extension due to the reciprocal action of kinetic force, crack extension and strain energy. During stable crack extension, the maximum fracture resistances of the dynamic tests was 147% larger than that of the static tests.