• 제목/요약/키워드: peristaltic flow

검색결과 44건 처리시간 0.024초

연동펌프의 유량맥동 조절과 역류현상을 방지하는 장치에 대한 연구 (A Study for Regulating Flow Fluctuation and Preventing Backflow of Peristaltic Pump)

  • 정유석;이철수;이태경
    • 한국유체기계학회 논문집
    • /
    • 제19권5호
    • /
    • pp.28-34
    • /
    • 2016
  • Though a peristaltic pump is a crucial element in miniaturized drug delivery systems, it has some intrinsic disadvantages such as backflow and flow fluctuation. To overcome these limitation, we have developed valve-less peristaltic pump system including orifice and stagnation chamber. we measured flow rate to investigate the performance of rotary peristaltic pump with three rollers and an elastomeric tube pumping a viscous fluid. The flow fluctuations and the backflow happen as a result from the disengagement of the contact interaction between the rollers and the tubes. Stagnation chamber installed in front of orifice plate was composed of rubber tube and gas chamber. By changing orifice hole diameter with stagnation chamber flow rate and pressure in the tube was regulated. The obtained maximum reduction ratio of flow fluctuation is 96.79%.

수치해석을 이용한 튜브 연동식 펌프의 변형에 대한 연구 (The Study About Deformation of a Peristaltic Pump using Numerical Simulation)

  • 왼바흥;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.652-658
    • /
    • 2015
  • The purpose of this study is to investigate the effects of changing dimension of a soft tube in a peristaltic pump on deformation, stress and fluid flow rate of the peristaltic pump. Geometries of the peristaltic pump is created in a Catia drawing software based on specifications of a real peristaltic pump. Afterwards, the geometries of this pump is imported into a commercial Ansys software to calculate deformation, stress, and fluid flow rate of this pump. The simulation results showed that the deformation and stress of the soft tube is increased by increasing soft tube diameter from 2 mm to 4 mm. When the tube diameter is increased to 5 mm and tube thickness is reduced to 0.5 mm, the soft tube is damaged. The highest fluid flow rate could be found at the tube thickness and diameter of 1 mm and 4 mm, respectively.

저 맥동 연동 펌프 기반 플로우 스루 셀 방식 용출 장치 설계 (Design of Dissolution Apparatus for the Flow-through Cell Method Based on the Low Pulsation Peristaltic Pump)

  • 조준성;정석;박상범
    • 한국기계가공학회지
    • /
    • 제19권1호
    • /
    • pp.11-18
    • /
    • 2020
  • The emergence of the flow-through cell (FTC) method has made up for the limitations of previous dissolution test methods, but the high cost of the FTC dissolution devices have seriously hindered the progression of research and application of the FTC. This new design uses a peristaltic pump to simulate the sinusoidal flow rate of a piston pump. The flow profile of each peristaltic pump was sinusoidal with a pulsation of 120 ± 1 pulses per minute, and the flow rate ranged from 1.0 - 36.0 mL/min. The flow control of each channel was adjusted independently so the flow errors of the seven channels were close to 2%. The structure of the system was simplified, and the cost was reduced through manual sampling and immersing the FTC in a water bath. The dissolution rate of the theophylline and aminophylline films was determined, and good experimental results were obtained.

Fabrication and Drive Test of a Peristaltic Thermopnumatic PDMS Micropump

  • Jeong Ok Chan;Park Sin Wook;Yang Sang Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.649-654
    • /
    • 2005
  • This paper presents fabrication and drive test of a peristaltic PDMS micropump actuated by the thermopneumatic force. The micropump consists of the three peristaltic-type actuator chambers with microheaters on the glass substrate and a microchannel connecting the chambers and the inlet/outlet port. The micropump is fabricated by the spin-coating process, the two-step curing process, the JSR (negative PR) molding process, and etc. The diameter and the thickness of the actuator diaphragm are 2.5 mm and $30{\mu}m$, respectively. The meniscus motion in the capillary tube is observed with a video camera and the flow rate of the micro pump is calculated through the frame analysis of the recorded video data. The maximum flow rate of the micropump is about $0.36\;{\mu}L/sec$ at 2 Hz for the zero hydraulic pressure difference when the 3-phase input voltage is 20 V.

연동형 마이크로펌프의 유동에 대한 수치해석 연구 (A Numerical Study on the Flow Characteristics of a Peristaltic Micropump)

  • 이나리;이상혁;허남건
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.37-43
    • /
    • 2009
  • In the present study, the flow characteristics of a peristaltic micropump were numerically analyzed. A channel wall motion of the micropump was simulated using a moving mesh technique. A sine wave pattern was assumed to simulate the peristaltic motion of wall. The present numerical method was verified by comparing the result with the available numerical data. The effects of the operating conditions which include the maximum displacement and frequency of the channel wall and the phase difference between top and bottom walls on the flow characteristics were investigated. From these numerical results, the pressure-flowrate characteristic curve was obtained for various maximum displacement and frequencies.

Bionic Study of Variable Viscosity on MHD Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel

  • Khan, Ambreen A.;Muhammad, Saima;Ellahi, R.;Zia, Q.M. Zaigham
    • Journal of Magnetics
    • /
    • 제21권2호
    • /
    • pp.273-280
    • /
    • 2016
  • In this paper, the peristaltic flow of Psedoplastic fluid with variable viscosity in an asymmetric channel is examined. The bionic effects by means of magnetohydrodynamics (MHD) are taken into account. The assumptions of long wave length and low Reynolds number are taken into account. The basic equations governing the flow are first reduced to a set of ordinary differential equation by using appropriate transformation for variables and then solve by using perturbation method. The effect of physical parameters on the pressure rise, velocity and pressure gradient are illustrated graphically. The trapping phenomenon is analyzed through stream lines. A suitable comparison has also been made as a limiting case of the considered problem.

마이크로 정량펌프의 유동해석과 작동성능 평가 (The Flow Analysis and Evaluation of the Peristaltic Micropump)

  • 박대섭;최종필;김병희;장인배;김헌영
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.195-202
    • /
    • 2004
  • This paper presents the fabrication and evaluation of mechanical behavior for a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of the lower plate, the middle plate, the upper plate and the tube that connects inlet and outlet of the pump. The lower plate includes the channel and the chamber, and the plain middle plate are made of glass and actuated by the piezoelectric translator. Channels and a chamber on the lower plate are fabricated on high processability silicon wafer by the DRIE(Deep Reactive Ion Etching) process. The upper plate does the roll of a pump cover and has inlet/outlet/electric holes. Three plates are laminated by the aligner and bonded by the anodic bonding process. Flow simulation is performed using error-reduced finite volume method (FVM). As results of the flow simulation and experiments, the single chamber pump has severe flow problems, such as a backflow and large fluctuation of a flow rate. It is proved that the double-chamber micropump proposed in this paper can reduce the drawback of the single-chamber one.

The Pumping Characteristics of the Valveless Peristaltic Micropump by the Variation of Design Parameters

  • Chang, In-Bae;Park, Dae-Seob;Kim, Byeng-Hee;Kim, Heon-Young
    • KSTLE International Journal
    • /
    • 제3권2호
    • /
    • pp.101-109
    • /
    • 2002
  • This paper presents the fabrication and performance inspection of a peristaltic micropump by flow simulation. The valve-less micropump using the diffuser/nozzle is consists of base plate, mid plate, top plate and connection tubes fur inlet and outlet. In detail, the base plate is composed of two diffuser nozzles and three chambers, the mid plate consists of a glass diaphragm for the volumetric change of the pumping chamber. The inlet and outlet tubes are connected at the top plate and the actuator fur pressing the diaphragm is located beneath the top plate. The micropump is fabricated on the silicon wafer by DRIE (Deep Reactive ion Etching) process. The pumping performances are tested by the pneumatic test rig and compared with the simulated results fur various dimensions of diffuser nozzles. The pumping characteristics of the micropump by the volumetric change at the pumping chamber is modeled and simulated by the commercial software of FLOW-3D. The simulated results shows that reverse flow is the inherent phenomena in the diffuser nozzle type micropump, but it can be reduced at the dual pumping chamber model.

Peristaltic 운동을 이용한 추진에 대한 연구 (Analysis for the Propulsion with Peristaltic Motion)

  • 김문찬
    • 대한조선학회논문집
    • /
    • 제39권4호
    • /
    • pp.11-16
    • /
    • 2002
  • 고점성 유체내에서의 추진력을 얻기 위하여 Peristatic 운동에 의한 추진을 실험적, 수치적 방법으로 연구하였다. 운동을 수치적으로 해석하기 위하여 비 정규격자를 사용한 셀 중심 법을 이용하여 해석하였다. 실험을 위하여 작은 수조를 만들었으며 모형을 끌 수 있는 전차와 고점성 액체인 그리세린을 사용하여 Peristaltic 운동을 구현하였다. 여러 조건 하에서 실험을 수행하였으며, 여러 실험 결과 중에서 가장 비교가 용이한 정지 상태에서 실험한 결과에 대하여 개발된 프로그램을 이용한 해석 결과와 비교하였다. 해석 결과는 실험 결과와 좋은 일치를 보였다. Peristaltic 운동은 압력 차를 이용하여 추진력이 얻어짐을 계산을 통하여 보였으며 더 많은 계산을 통하여 최적 운동조건이나 Peristatic 운동이 효과적인 영역(레이놀즈 수) 등을 찾아낼 수 있으리라 생각된다.

다양한 동작신호의 사용에 따른 연동형 마이크로 펌프의 성능 향상 (Performance Improvement of Peristaltic Micropump Using Various Actuating Signal)

  • 홍표환;정동건;표대승;이종현;조찬섭;김봉환
    • 센서학회지
    • /
    • 제22권6호
    • /
    • pp.428-432
    • /
    • 2013
  • This paper described the development of electrostatically driven peristaltic micropump. The proposed micropump consists of a flexible membrane and a single chamber which electrodes are inserted. The single chamber is divided into smaller cells by the electrodes. The fabricated micropump was operated with four electrodes in the membrane and a various phase sequencing actuation. We studied the changes in the flow rate corresponding to the actuating signal applied to the micropump under the zero hydraulic pressure difference between lnlet port and outlet port. The pump was operated from 60 to 130 V. Whereas the maximum flow rate in basic actuating signal is about 83 ${\mu}1/min$ at 15 Hz, the maximum flow rate in optimized actuating signal is about 114 ${\mu}l/min$ at 10 Hz.