• Title/Summary/Keyword: periodic solutions

Search Result 318, Processing Time 0.029 seconds

Optimal Designofa Process-Inventory Network Under Infrequent Shutdowns (간헐적인 운전시간 손실하에 공정-저장조 망구조의 최적설계)

  • Yi, Gyeongbeom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.563-568
    • /
    • 2013
  • The purpose of this study is to find the analytic solution for determining the optimal capacity (lot-size) of a batch-storage network to meet the finished product demand under infrequent shutdowns. Batch processes are bound to experience random but infrequent operating time losses. Two common remedies for these failures are duplicating another process or increasing the process and storage capacity, both of which are very costly in modern manufacturing systems. An optimization model minimizing the total cost composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units is pursued with the framework of a batch-storage network of which flows are susceptible to infrequent shutdowns. The superstructure of the plant consists of a network of serially and/or parallel interlinked batch processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors.A novel production and inventory analysis method, the PSW (Periodic Square Wave) model, is applied. The advantage of the PSW model stems from the fact it provides a set of simple analytic solutions in spite of a realistic description of the material flow between processes and storage units. The resulting simple analytic solution can greatly enhance a proper and quick investment decision at the early plant design stagewhen confronted with diverse economic situations.

Prediction of Permeability for Braided Preform (브레이드 프리폼의 투과율 계수 예측)

  • Youngseok Song;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.184-187
    • /
    • 2003
  • Complete prediction of second order permeability tensor for three dimensional circular braided preform is critical to understand the resin transfer molding process of composites. The permeability can be predicted by considering resin flow through the multi-axial fiber structure. In this study, permeability tensor for a 3-D circular braided preform is calculated by solving a boundary problem of a periodic unit cell. Flow field through the unit cell is obtained by using a 3-D finite volume method (FVM) and Darcy's law is utilized to obtain permeability tensor. Flow analysis for two cases that a fiber tow is regarded as impermeable solid and permeable porous medium is carried out respectively. It is found that the flow within the intra-tow region of the braided preform is negligible if inter-tow porosity is relatively high but the flow through the tow must be considered when the porosity is low. To avoid checkerboard pressure field and improve the efficiency of numerical computation, a new interpolation function for velocity variation is proposed on the basis of analytic solutions. Permeability of the braided preform is measured through a radial flow experiment and compared with the permeability predicted numerically.

  • PDF

Stability analysis of the rotating and stationary grooved journal bearings (정지홈과 회전홈을 갖는 저널베어링의 안정성 평가)

  • Lee, M.H.;Lee, J.H.;Jang, G.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.141-146
    • /
    • 2013
  • This research investigates the stability analysis for the rotating and the stationary grooved journal bearing. The dynamic coefficients of the journal bearing are calculated by using FEM and the perturbation method. When journal bearing is in whirling motion, the dynamic coefficients have time-varying components as a sine wave due to the reaction force of oil film toward the center of journal even in the steady state. The solutions for the equations of motion can be assumed as the Fourier series expansion. The equations of motion can be rewritten as the linear algebraic equations with respect to the Fourier coefficients. Then, stability of the grooved journal bearing can be calculated by Hill's infinite determinant. The periodic function of dynamic coefficients is derived using Fourier Fast Transform(FFT).The stability of journal bearing is determined as rotating speed increases and the stability of rotating grooved journal bearing is compared and discussed with the stability of stationary grooved journal bearing.

  • PDF

Fabrication of Diffraction Grating Mold Using Dot Pattern (도트 패턴을 이용한 회절 격자 금형 제작)

  • Noh, Ji-Whan;Lee, Jae-Hoon;Sohn, Hyon-Kee;Suh, Jeong;Shin, Dong-Sig;Joung, Young-Un
    • Laser Solutions
    • /
    • v.9 no.3
    • /
    • pp.1-5
    • /
    • 2006
  • Diffraction grating is the optical device which has periodic pattern. Decorative logotypes is the one of application of diffraction grating. In this paper diffraction grating for decorative logotype is fabricated by dot pattern in stead of line pattern. A metallic mold for diffraction gratings is fabricated with a mode-locked 12 ps Nd:YVO4 laser. Laser pulses with a wavelength of 355nm are irradiated on the surface of NOK 80, a mold material, to generate dot patterns. In order to minimize the dot diameter, laser power is set just above the ablation threshold of NOK 80. Results show that the spectrum from the fabricated mold is good enough for some industrial application

  • PDF

Monitoring of the Content of Imidazoline-Containing Corrosion Inhibitor

  • Zadorozhny, P.A.;Sukhoverkhov, S.V.;Markin, A.N.;Savin, K.I.;Prokuda, N.A.
    • Corrosion Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.161-166
    • /
    • 2017
  • The qualitative composition of active components of the corrosion inhibitor CGW-85567 was studied. It was found that С18:2 and С18:1 imidazolines and the corresponding imidazolin-amides are the major components. The HPLC/MS technique was developed for their determination in the water solutions of monoethylene glycol (MEG). Industrial application of the inhibitor showed that MEG solution retained high concentration of the inhibitor for a long time after ceasing its addition into pipelines. Low values of the partition coefficients (0.010-0.014) of imidazolines in the system "water solution of MEG (concentration of MEG 62-85% v/v) - gas condensate" have allowed to pass on from the technology of continuous pumping of the inhibitor into protected pipelines to the periodic dosing technology. Taking into account a long time of circulation in the system and high temperatures during MEG regeneration process possible degradation products of the inhibitor were studied. N, N-dimethyl-dodecanamine-1, and N, N-dimethyl-tetradecanamine-1 were identified as major degradation products of the corrosion inhibitor CGW-85567.

Sol-Gel Transition in Di-(2-ethylhexyl) phthalate-Plasticized Poly(vinyl chloride)

  • Lee, Chang-Hyung;Nah, Jae-Woon;Cho, Kil-Won;Kim, Seong-Hun;Hahn, Ai-Ran
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.10
    • /
    • pp.1485-1489
    • /
    • 2003
  • The gelation for di-(2-ethylhexyl) phthalate (DEHP)-plasticized poly(vinyl chloride) was studied by measuring time-resolved small-angle X-ray scattering (SAXS) and a flow of the solutions in test tube. It was found that for the gelation there were three regimes. At Regime I, the solution rapidly changed to a gel, and the SAXS intensity showed a peak and the peak intensity increased, keeping the peak angle constant. Applying the SAXS intensity to the kinetic analysis of the liquid-liquid phase separation, it was revealed that the spinodal decomposition proceeded to develop a periodic length of 29.9 nanometer in size, a hydrogen-bonding-type association in polymer rich phase followed, and then it induced fast gelation rate. At Regime II, the gelation slowly occurred and the SAXS intensity was not observed, suggesting that a homogeneous gel network was formed by a hydrogen-bonding. At regime III, the solution was a homogeneous sol.

Vibrations of a taut horizontal cable subjected to axial support excitations considering nonlinear quasi-static responses

  • Jiang Yi;Yingqi Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.221-235
    • /
    • 2023
  • To calculate the vibrations of a tout cable subjected to axial support excitations, a nonlinear relationship of cable force and the support displacement under static situations are employed to depict the quasi-static vibration of the cable. The dynamic components of quasi-static vibration are inputted as "direct loads" to cause the parametric vibrations on the cable. Both the governing equations of motion and deformation compatibility for parametric vibrations are then derived, which indicates the high coupling of cable parametric force and deformation. Numerical solutions, based on the finite difference method, are put forward for the parametric vibrations, which is validated by the finite element method under periodic axial support excitations. For the quasi-static response, the shorter cables are more sensitive to support excitations than longer ones at small cable force. The quasi-static cable force makes the greatest contribution to the total cable force, but the parametric cable force is responsible for the occurrence of cable loosening at large excitation amplitudes. Moreover, this study also revealed that the traditional approach, assuming a linear relationship between quasi-static cable force and axial support displacement, would result in some great error of the cable parametric responses.

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

Study on Miniaturized RF Components for Application to Ship Radio Communication (선박 무선통신 응용을 위한 초소형 RF 소자에 관한 연구)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.390-391
    • /
    • 2022
  • Recently, SpaceX, private enterprise dealing in space development company, has reported a plan for launching of low earth orbit satellites via Starlink Business, and launched 900 satellites until now. Concretely, it plans tp operate Ku/Ka band satellite, and launch 7,518 of V band satellites for broadband communication. Therefore, wireless communication service for ship will be provided, and various solutions will be offered through the low earth orbit satellites. In this work, we investigated RF characteristics of coplanar waveguide employing periodic 3D coupling structures, and examined its potential for a development of marine radio communication FISoC (fully-integrated system on chip) semiconductor device.

  • PDF

Study on reduction of power consumption in GPS embedded terminals with periodic position fix (GPS 단말기에서의 주기적 위치 측위에 따른 전력소모 최소화 방안 연구)

  • Bae, Seong-Soo;Kim, Dong-Ku;Kim, Tae-Min;Han, Chang-Moon;Kim, Byeong-Cheol
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.239-251
    • /
    • 2007
  • This thesis is about the reduction of the power consumption in GPS embedded terminals with periodic position fix to improve the time delay of position determination. In order to improve time delay of position determination during the wireless terminal is powered on, it needs to be set such that it can be periodically recalibrated by the GPS and those recalibrated values need to be saved in the terminal's memory so that it can reduce the time delay from the request of location. By using the trace of the information that's been saved in the terminal's memory, it can be set so that it'll be easier to determine whether the wireless terminal has gone into buildings and have the capability of checking if it has gone into a specific building. Likewise, while the terminal is turned on, in order calibrate the location, it needs to continuously work the GPS engine which leads to a rapid decrease in terminal's idle time. This thesis proposes some solutions regarding these issues - reducing 20 ~ 30% of the battery consumption for GPS visible situation that can occur when the wireless terminal periodically calibrates its location to determine the in-building status, and extending the idle time of the terminal by flexibly using the suggested GPS calibration time method according to wireless terminal's mobility.

  • PDF