• 제목/요약/키워드: periodic homogenization

검색결과 25건 처리시간 0.025초

기하양상을 고려한 균열 내 투수계수 산정

  • 채병곤;;김용재
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.159-163
    • /
    • 2004
  • This study was conducted to calculate the permeability coefficient in a single fracture while taking the true fracture geometry into consideration. The fracture geometry was measured using the confocal laser scanning microscope (CLSM). The CLSM geometry data were used to reconstruct a fracture model for numerical analysis using a homogenization analysis (HA) method. The HA is a new type of perturbation theory developed to characterize the behavior of a micro-inhomogeneous material that involves periodic microstructures. The HA permeability was calculated based on the local geometry and local material properties (water viscosity in this case). The results show that the permeability coefficients do not follow the theoretical relationship of the cubic law.

  • PDF

일축압축하 결정질암석 공식체에서의 응력분포 및 파괴에 대한 연구 (A study of stress distribution and subsequent failure in crystalline rock specimens under uniaxial compression)

  • 정교철
    • 자원환경지질
    • /
    • 제32권1호
    • /
    • pp.93-100
    • /
    • 1999
  • In rock, there are many microsopic structures which influence the mechnical behavior of rock. Many microstructures interact with each other, and furthermore, material constants vary discontinuously within rock, as most rocks are composed of several minerals. Taking into account this feature, it may be possible to contemplate a microstructure of rock as a unit cell by which the rock is constituted periodically. If this idealization is acceptable, the homogenization method can be applied. In this research, various microcracks on rock specimens were observed through a stereoscopic microscope under uniaxial compression. On the other hand, local stress distribution in the periodic-micro structure was calculated by the homogenization method. Then it is shown that there is a possibility to establish a relation between the behavior of microcrack and macroscopic load quantitatively by the linear fracture mechanics.

  • PDF

분말가압 성형공정의 멀티스케일 시뮬레이션과 공정변수 최적화 (Multi-scale Simulation of Powder Compaction Process and Optimization of Process Parameters)

  • 심진우;심정길;금영탁
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.344-347
    • /
    • 2007
  • For modeling the non-periodic and randomly scattered powder particles, the quasi-random multi-particle array is introduced. The multi-scale process simulation, which enables to formulate a regression model with a response surface method, is performed by employing a homogenization method. The size of ${Al_2}{O_3}$ particle, amplitude of cyclic compaction pressure, and friction coefficient are considered as optimal process parameters. The optimal conditions of process parameters providing the highest relative density are finally found by using the grid search method.

  • PDF

섬유강화 복합재료 등가열팽창계수 예측 및 인공위성 열지향오차 해석 (Prediction of the Equivalent Coefficient of Thermal Expansion of Fiber Reinforced Plastic Lamina and Thermal Pointing Error Analysis of Satellites)

  • 유원영;임재혁;김선원;김창호;김성훈
    • 항공우주기술
    • /
    • 제13권1호
    • /
    • pp.76-85
    • /
    • 2014
  • 본 연구에서는 다양한 열팽창계수 예측기법을 활용해서 섬유강화 복합재료 라미나 등가 열팽창계수 예측을 수행하였다. 등가열팽창계수를 예측하는 많은 식들이 제안되어 왔지만 사용대상에 따라 제약이 있거나, 예측결과가 시험결과와 잘 일치하지 않는 문제점을 갖고 있다. 본 연구에서 실제 복합재료 형상과 유사한 대표체적요소를 선정하여 유한요소 모델링을 수행하고 여기에 주기적 경계조건을 부여하여 재료의 등가열팽창계수를 예측하였다. 예측결과를 기존의 예측식 및 시험결과와 비교하여 그 성능을 검증하였으며, 별추적기 지지구조물의 열지향오차해석을 수행하고 다양한 예측물성을 따라 그 정확도를 검토하였다.

A multiscale method for analysis of heterogeneous thin slabs with irreducible three dimensional microstructures

  • Wang, Dongdong;Fang, Lingming
    • Interaction and multiscale mechanics
    • /
    • 제3권3호
    • /
    • pp.213-234
    • /
    • 2010
  • A multiscale method is presented for analysis of thin slab structures in which the microstructures can not be reduced to two-dimensional plane stress models and thus three dimensional treatment of microstructures is necessary. This method is based on the classical asymptotic expansion multiscale approach but with consideration of the special geometric characteristics of the slab structures. This is achieved via a special form of multiscale asymptotic expansion of displacement field. The expanded three dimensional displacement field only exhibits in-plane periodicity and the thickness dimension is in the global scale. Consequently by employing the multiscale asymptotic expansion approach the global macroscopic structural problem and the local microscopic unit cell problem are rationally set up. It is noted that the unit cell is subjected to the in-plane periodic boundary conditions as well as the traction free conditions on the out of plane surfaces of the unit cell. The variational formulation and finite element implementation of the unit cell problem are discussed in details. Thereafter the in-plane material response is systematically characterized via homogenization analysis of the proposed special unit cell problem for different microstructures and the reasoning of the present method is justified. Moreover the present multiscale analysis procedure is illustrated through a plane stress beam example.

프로젝션 기법을 활용한 위상 최적설계 (Topology Design Optimization using Projection Method)

  • 하승현
    • 한국전산구조공학회논문집
    • /
    • 제29권4호
    • /
    • pp.293-299
    • /
    • 2016
  • 본 논문은 확장된 프로젝션 기법을 사용한 위상 최적설계 방법을 다루고 있다. 다양한 형상과 길이 스케일을 가지는 프로젝션 함수를 개발해 위상 최적설계 기법에 적용시킴으로써, 복합재료의 설계에서 형상 및 크기가 미리 주어진 보강재의 최적 배치를 위상 최적설계를 통해 결정할 수 있음을 확인하였다. 또한 이와 같은 프로젝션 기법이 균질화법과 결합되어 체적탄성률 또는 전단탄성률 등의 유효 재료특성을 최대화시키는 단위 구조를 설계함으로써, 주기 구조를 가지는 복합재료에서 보강재의 최적 배치를 결정하고 그 유효 재료특성값을 수치적으로 계산할 수 있음을 여러 수치 예제들을 통해서 검증하였다.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • 제81권3호
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.

Fiber reinforced concrete properties - a multiscale approach

  • Gal, Erez;Kryvoruk, Roman
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.525-539
    • /
    • 2011
  • This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.

Mesoscopic study on historic masonry

  • Sejnoha, J.;Sejnoha, M.;Zeman, J.;Sykora, J.;Vorel, J.
    • Structural Engineering and Mechanics
    • /
    • 제30권1호
    • /
    • pp.99-117
    • /
    • 2008
  • This paper presents a comprehensive approach to the evaluation of macroscopic material parameters for natural stone and quarry masonry. To that end, a reliable non-linear material model on a meso-scale is developed to cover the random arrangement of stone blocks and quasi-brittle behaviour of both basic components, as well as the impaired cohesion and tensile strength on the interface between the blocks and mortar joints. The paper thus interrelates the following three problems: (i) definition of a suitable periodic unit cell (PUC) representing a particular masonry structure; (ii) derivation of material parameters of individual constituents either experimentally or running a mixed numerical-experimental problem; (iii) assessment of the macroscopic material parameters including the tensile and compressive strengths and fracture energy.

FDTD를 이용한 격자형 페라이트 전파흡수체 특성 해석 (FDTD Analysis of the Absorption Characteristics for Grid Ferrite Electromagnetic Wave Absorber)

  • 이재용;정연춘;명노훈
    • 한국전자파학회논문지
    • /
    • 제9권4호
    • /
    • pp.483-490
    • /
    • 1998
  • The reflectivity of a grid ferrite electromagnetic wave absorber is analyzed using finite difference time domain (FDTD) method, which is usually used in anechoic chambers for EMI / EMS test. The frequency dispersive characteristics of ferrite medium and its boundary condition are modeled using magnetic flux in addition to E- and H-fields. By applying Floquets theorem, FDTD analysis of the grid ferrite absorber with periodic infinite array is simplified as a unit cell problem. The method of homogenization which is mainly utilized in the calculation of absorber reflectivity as a low frequency technique takes only into account volume fraction of the unit cell of the absorber except for the structure of medium geometry. However, the presented method in this paper can analyze the geometry effect of the unit cell with its medium characteristics up to high frequency region.

  • PDF