Browse > Article
http://dx.doi.org/10.12989/cac.2011.8.5.525

Fiber reinforced concrete properties - a multiscale approach  

Gal, Erez (Department of Structural Engineering, Ben-Gurion University)
Kryvoruk, Roman (Department of Structural Engineering, Ben-Gurion University)
Publication Information
Computers and Concrete / v.8, no.5, 2011 , pp. 525-539 More about this Journal
Abstract
This paper describes the development of a fiber reinforced concrete (FRC) unit cell for analyzing concrete structures by executing a multiscale analysis procedure using the theory of homogenization. This was achieved through solving a periodic unit cell problem of the material in order to evaluate its macroscopic properties. Our research describes the creation of an FRC unit cell through the use of concrete paste generic information e.g. the percentage of aggregates, their distribution, and the percentage of fibers in the concrete. The algorithm presented manipulates the percentage and distribution of these aggregates along with fiber weight to create a finite element unit cell model of the FRC which can be used in a multiscale analysis of concrete structures.
Keywords
FRC-fibered reinforced concrete; multiscale analysis; concrete unit cell; elastic properties; mesoscale concrete finite element model;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Stock, A.F., Hannant, D.J. and Williams, R.I.T. (1979), "Effect of aggregate concentration upon the strength and modulus of elasticity of concrete", Mag. Concrete Res., 31, 225-234.   DOI   ScienceOn
2 Sun, Z., Garboczi, E.J. and Shah, S.P. (2007), "Modeling the elastic properties of concrete composites: experiment, differential effective medium theory, and numerical simulation", Cement Concrete Compos., 29, 22-38.   DOI   ScienceOn
3 Swamy, R.N. (1975), "Fiber reinforced concrete of cement and concrete", Materaux et Constructions Mater. Struct., 8(45), 235-254.   DOI
4 Tan, K.H., Paramasivam, P. and Tan, K.C. (1994), "Instantaneous and long-term deflections of steel fiber reinforced concrete beams", ACI Struct. J., 91(4), 384-393.
5 Teng, T.L., Chu, Y.A., Chang, F.A. and Chin, H.S. (2004), "Calculating the elastic moduli of steel-fiber reinforced concrete using a dedicated empirical formula", Comp. Mater. Sci., 31, 337-346.   DOI
6 Terada, K. and Kikuchi, N. (1995), "Nonlinear homogenization method for practical applications", S. Ghosh and M. ostoja-Starzewski, EDS, Computational Methods in Micromechanics, ASME, New York, AMD-212/MD-62, 1-16.
7 Terada, K. and Kikuchi, N. (2001), "A class of general algorithms for multi-scale analysis of heterogeneous media", Comput. Method. Appl. M., 190, 5427-5464.   DOI   ScienceOn
8 Thomee, B., Schikora, K. and Bletzinger, K.U. (2006), "Material modeling of steel fiber reinforced concrete", Comput. Concrete, 3(4), 197-212.   DOI
9 Ulm, F.J., Eric Lemarchand, E. and Heukamp, F.H. (2003), "Elements of chemomechanics of calcium leaching of cement-based materials at different scales", Eng. Fracture Mech., 70 , 871-889.   DOI   ScienceOn
10 Ulm, F.J. and Jennings, H.M. (2008), "Does C-S-H particle shape matter? A discussion of the paper 'Modelling elasticity of a hydrating cement paste', by Julien Sanahuja, Luc Dormieux and Gilles Chanvillard. CCR 37 (2007) 1427-1439", Cement Concrete Res., 38, 1126-1129.
11 Ulm, F.J., Pellenq, R.J.M. and Vandamme, M. (2010), "C-concrete: from atoms to concrete structures", Nenad Bicanic, Rene Borst, Herbert Mang, Gunther Meschke (Edt.), Computational Modelling of Concrete Structures, CRC Press, Austria, 65-75.
12 Ulm, F.J., Vandamme, M., Hamlin Jennings, M., Vanzo, J., Bentivegna, M., Krakowiak, K.J., Constantinides, G., Bobko, C.P. and Van Vliet, K.J. (2010), "Does microstructure matter for statistical nanoindentation techniques?", Cement Concrete Compos., 32, 92-99.   DOI   ScienceOn
13 Voigt, W. (1889), "Uber die beziehung zwischen den beiden elastizitatskonstanten isotroper korper", Wied. Ann., 38, 573-587.
14 Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comp. Struct., 70, 533-544.   DOI   ScienceOn
15 Wells, G.N. and Sluys, L.J. (2001), "A new method for modeling of cohesive cracks using finite elements", Int. J. Numer. Meth. Eng., 50(12), 2667-2682.   DOI   ScienceOn
16 Williamson, G.R. (1974), "The effect of steel fibers on the compressive strength of concrete", Int. Symp. on Fiber Reinforced Concrete, SP44-11, American Concrete Institute, 195-207.
17 Wriggers, P. and Moftah, S.O. (2006), "Mesoscale models for concrete: homogenisation and damage behavior", Finite Elem. Anal. Des., 42, 623-636.   DOI   ScienceOn
18 Zohdi, T.I. and Wriggers, P. (2001), "Computational micro-macro material testing", Arch. Comput. Method. E., 8, 131-228.   DOI   ScienceOn
19 Zohdi, T.I. and Wriggers, P. (2005), Introduction to computational micromechanics, Springer, Berlin.
20 Aboudi, J. (1991), Mechanics of composite materials - a unified micromechanical approach, Elsevier, Amsterdam.
21 Aboudi, J. (2003), "Micromechanical analysis of the finite elastic-viscoplastic response of multiphase composites", Int. J. Solids Struct., 40, 2793-2817.   DOI   ScienceOn
22 Aboudi, J., Pindera, M.J. and Arnold, S.M. (2003), "Higher-order theory for periodic multiphase materials with inelastic phases", Int. J. Plasticity, 19(6), 805-847.   DOI   ScienceOn
23 Ahmad, H.A. and Lagoudas, C.L. (1991), "Effective elastic properties of fiber-reinforced concrete with random fibers", J. Eng. Mech., 117(12), 2931-2938.   DOI
24 Asferg, J.L., Poulsen, P.N. and Nielsen, L.O. (2007), "A consistent partly cracked XFEM element for cohesive crack growth", Int. J. Numer. Meth. Eng., 72, 464-485.   DOI   ScienceOn
25 Ashour, S.A., Wafa, F.F. and Kamal, M.I. (2000), "Effect of concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibruous concrete beams", Eng. Struct., 22(9), 1145-1158.   DOI   ScienceOn
26 Christensen, R.M. and Lo, K.H. (1979), "Solution for effective shear properties in three phase sphere and cylinder models", J. Mech. Phys. Solids, 27, 315-330.   DOI   ScienceOn
27 Benssousan, A., Lions, J.L. and Papanicoulau, G. (1978), Asymptotic analysis for periodic structures, North-Holland, Amsterdam.
28 Bentz, D.P., Garboczi, E.J. and Lagergren, E.S. (1998), "Multi-scale microstructural modelling of concrete diffusivity: identification of significant variables", Cement Concrete Aggr., 20(1), 129-139.   DOI   ScienceOn
29 Bullard, J.W. and Garboczi, E.J. (2006), "A model investigation of the influence of particle shape on portland cement hydration", Cement Concrete Res., 36(6),1007-1015.   DOI   ScienceOn
30 Constantinides, G. and Ulm, F.J. (2004), "The effect of two types of C-S-H on the elasticity of cement-based materials: results from nanoindentation and micromechanical modeling", Cement Concrete Res., 34(1), 67-80.   DOI   ScienceOn
31 Cusatis, G. and Cedolin, L. (2007), "Two-scale study of concrete fracturing behavior", Eng. Fracture Mech., 74, 3-17.   DOI   ScienceOn
32 de Borst, R., Pamin, J. and Geers, M.G.D. (1999), "On coupled gradient-dependent plasticity and damage theories with a view to localization analysis", Eur. J. Mech. A - Solids, 18(6), 939-962.   DOI   ScienceOn
33 de Borst, R. (2002), "Some recent issues in computational failure mechanics", Int. J. Numer. Meth. Eng., 52, 63-95.
34 DeJong, M.J. and Ulm, F.J. (2007), "The nanogranular behavior of C-S-H at elevated temperatures (up to 700$^{\circ}C$)", Cement Concrete Res., 37, 1-12.   DOI   ScienceOn
35 Drucker, D.C. and Prager, W. (1952), "Soil mechanics and plastic analysis or limit design", Q. Appl. Math., 10, 157-165.   DOI
36 Eshelby, J.D. (1957), "The determination of the field of an ellipsoidal inclusion and related problems", Proc. R. Soc. Lond. A., 241, 376-396.   DOI
37 Fish, J. and Shek, K.L. (1999), "Finite deformation plasticity of composite structures: computational models and adaptive strategies", Comput. Method. Appl. M., 172, 145-174.   DOI   ScienceOn
38 Ezeldin, A.S. and Balagaru, P.N. (1992), "Normal and high strength fiber reinforced concrete under compression", J. Mater. Civil Eng., 4(4), 415-429.   DOI
39 Feyel, F. (2003), "A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua", Comput. Method. Appl. M., 192, 3233-3244.   DOI   ScienceOn
40 Feyel, F. and Chaboche, J.L. (2000), "FE2 Multiscale approach for modeling the elastoviscoplastic behavior of long fiber Sic/Ti composite materials", Comput. Method. Appl. M., 183, 309-330.   DOI   ScienceOn
41 Fish, J., Shek, K., Pandheeradi, M. and Shephard, M.S. (1997), "Computational plasticity for composite structures based on mathematical homogenization: theory and practice", Comput. Method. Appl. M., 148, 53-73.   DOI
42 Fish, J. and Yu, Q. (2001), "Multiscale damage modeling for composite materials: theory and computational framework", Int. J. Numer. Meth. Eng., 52, 161-192.   DOI   ScienceOn
43 Fussl, J., Lackner, R., Eberhardsteiner, J. and Mang, H.A. (2008), "Failure modes and effective strength of twophase materials determined by means of numerical limit analysis", Acta Mech., 195, 185-202.   DOI
44 Gal, E., Ganz, A., Chadad, L. and Krivoruk, R. (2008), "Development of a concrete unit cell", Int. J. Multiscale Comp. Eng., 6(5), 499-510.   DOI
45 Garboczi, E.J. and Berryman, J.G. (2000), "New effective medium theory for the diffusivity or conductivity of a multi-scale concrete microstructure model", Concrete Sci. Eng., 2(6), 88-96.
46 Garboczi, E.J. and Berryman, J.G. (2001), "Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations", Mech. Mater., 33, 455-470.   DOI   ScienceOn
47 Garboczi, E.J. and Day, A.R. (1995), "An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase Poisson ratios", J. Mech. Phys. Solids., 43(9), 1349-1362.   DOI   ScienceOn
48 Garboczi, E.J. and Bullard, J.W. (2000), "Shape analysis of a reference cement", Cement Concrete Res., 34(10), 1933-1937.
49 Garboczi, E.J., Bullard, J.W. and Bentz, D.P. (2004), "Status of virtual testing of cement and concrete in the US - 2004", Concrete Int., 26(12), 33-37.
50 Garboczi, E.J., Douglas, J.F. and Bohn, R.B. (2006), "A hybrid finite elementanalytical method for determining the intrinsic elastic moduli of particles having moderately extended shapes and a wide range of elastic properties", Mech. Mater., 38(8-10), 786-800.   DOI   ScienceOn
51 Geers, M.G.D., Kouznetsova, V. and Brekelmans, W.A.M. (2001), "Gradient-enhanced computational homogenization for the micro-macro scale transition", J. Phys. IV, 11, 145-152.
52 Ghosh, S., Lee, K. and Moorthy, S. (1995), "Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method", Int. J. Solids Struct., 32, 27-62.   DOI   ScienceOn
53 Ghosh, S., Lee, K. and Moorthy, S. (1996), "Two scale analysis of heterogeneous elasticplastic materials with asymptotic homogenization and voronoi cell finite element model", Comput. Method. Appl. M., 132, 63-116.   DOI
54 Ghosh, S., Lee, K. and Raghavan, P. (2001), "A multi-level computational model for multi-scale damage analysis in composite and porous materials", Int. J. Solids. Struct., 38, 2335-2385.   DOI   ScienceOn
55 Gitman, I.M., Askes, H. and Sluys, L.J. (2007), "Representative volume: existence and size determination engineering", Fracture Mech., 74, 2518-2534.   DOI   ScienceOn
56 Gitman, I.M., Gitman, M.B. and Askes, H. (2006), "Quantification of stochastically stable representative volumes for random heterogeneous materials", Arch. Appl. Mech., 75, 79-92.   DOI
57 Haecker, C.J., Garboczi, E.J., Bohn, R.B., Sun, Z., Voigt, T. and Shah, S.P (2005), "Modeling the linear elastic properties of cement paste", Cement Concrete Res., 35(10), 1948-1960.   DOI   ScienceOn
58 Gitman, I.M., Askes, H. and Sluys, L.J. (2008), "Coupled-volume multi-scale modeling of quasi-brittle material", Eur. J. Mech. A - Solids, 27, 302-327.   DOI   ScienceOn
59 Guedes, J.M. and Kikuchi, N. (1990), "Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods", Comput. Method. Appl. M., 83, 143-198.   DOI   ScienceOn
60 Gutierrez, M.A. (2004), "Energy release control for numerical simulations of failure in quasi-brittle solids", Commun. Numer. Meth. Eng., 20, 19-29.
61 Haffner, S., Eckardt, S., Luther, T. and Koknke, C. (2006), "Mesoscale modeling of concrete: geometry and numerics", Comp. Struct., 84, 450-461.   DOI   ScienceOn
62 Halpin, J.C. and Kardos, J.L. (1976), "Halpin-Tsai equations: a review", Polym. Eng. Sci., 1976, 16(5), 344-352.   DOI   ScienceOn
63 Hashin, Z. (1962), "The elastic moduli of heterogeneous materials", J. Appl. Mech., 29, 143-150.   DOI
64 He, H., Guo, Z., Stroeven, P., Stroeven, M. and Sluys, L.H. (2009), "Influence of particle packing on elastic properties of concrete", Proceeding of The First International Conference on Computational Technologies in Concrete Structures (CTCS'09), Jeju, Korea, May, 1177-1198.
65 Hill, R. (1965), "A self-consistent mechanics of composite materials", J. Mech. Phys. Solids, 13, 357-372.
66 Hung, L.T., Dormieux, L., Jeannin, L., Burlion, N. and Barthelemy, J.F. (2008), "Nonlinear behavior of matrixinclusion composites under high confining pressure: application to concrete and mortar", C.R. Mecanique, 336, 670-676.   DOI   ScienceOn
67 Ibrahimbegovic, A. and Markovic, D. (2003), "Strong coupling methods in multiphase and multiscale modeling of inelastic behavior of heterogeneous structures", Comput. Method. Appl. M., 192, 3089-3107.   DOI   ScienceOn
68 Kouznetsova, V., Geers, M.G.D. and Brekelmans, W.A.M. (2002), "Multi-scale constitutive modeling of heterogeneous materials with a gradient tenhanced computational homogenization scheme", Int. J. Numer. Meth. Eng., 54, 1235-1260.   DOI   ScienceOn
69 Jirasek, M. (2000), "Comparative study on finite elements with embedded discontinuities", Comput. Method. Appl. M., 188, 307-330.   DOI
70 Johnston, C.D. (1974), "A review of mechanical properties, fiber reinforced concrete", Steel Fiber Reinforced Concrete, ACI Publication, SP-44, 127-142.
71 Kouznetsova, V., Brekelmans, W.A. and Baaijens, F.P.T. (2001), "An approach to micro-macro modeling of heterogeneous materials", Comp. Mech., 27, 37-48.   DOI   ScienceOn
72 Lee, J., Xi, Y., Willam, K. and Jung, Y. (2009), "A multiscale model for modulus of elasticity of concrete at high temperatures", Cement Concrete Res., 39, 754-762.   DOI   ScienceOn
73 Mang, H.A., Aigner, E., Eberhardsteiner, J., Hackspiel, C., Hellmich, C., Hofstetter, K., Lackner, R., Pichler, B., Scheiner, S. and Stürzenbecher, R. (2009), "Computational multiscale analysis in civil engineering", Int. Multiscale Mech., 2(2), 109-128.   DOI
74 Mang, H.A., Lackner, R., Meschke, G. and Mosler, J. (2003), "Computational modeling of concrete structures", Karihaloo BL, Ritchie RO, Milne I, de Borst R, Mang HA, (editors), Comprehensive structural integrity, Numerical and computational methods, 3. Oxford: Elsevier Science, 541-606.
75 Mansur, M.A., Chin, M.S. and Wee, T.H. (1999), "Stress-strain relationship of high strength fiber concrete in compression", J. Mater. Civil Eng., 11(1), 21-29.   DOI   ScienceOn
76 Markovic, D. and Ibrahimbegovic, A. (2004), "On micro-macro interface conditions for micro scale based FEM for inelastic behavior of heterogeneous materials", Comput. Method. Appl. M., 193, 5503-5523.   DOI   ScienceOn
77 Matsui, K., Terada, K. and Yuge, K. (2004), "Two-scale finite element analysis of heterogeneous solids with periodic microstructures", Comp. Struct., 82, 593-606.   DOI   ScienceOn
78 Miehe, C. and Koch, A. (2002), "Computational micro-to-macro transition of discretized microstructures undergoing small strain", Arch. Appl. Mech., 72, 300-317.   DOI   ScienceOn
79 Meschke, G. and Dumstorff, P. (2007), "Energy-based modeling of cohesive and cohesionless cracks via XFEM", Comput. Method. Appl. M., 196, 2338-2357.   DOI   ScienceOn
80 Moes, N. and Belytschko, T. (2002), "Extended finite element method for cohesive crack growth", Eng. Fracture Mech., 69, 813-833.   DOI   ScienceOn
81 Mori, T. and Tanaka, K. (1973), "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574.   DOI   ScienceOn
82 Nadeau, J.C. (2003), "A multiscale model for effective moduli of concrete incorporating ITZ water-cement ratio gradients, aggregate size distributions, and entrapped voids", Cement Concrete Res., 33, 103-113.   DOI   ScienceOn
83 Oliver, J. (1996), "Modeling strong discontinuities in solid mechanics via strain softening constitutive equations. Part 1: Fundamentals, Part 2: Numerical simulation", Int. J. Numer. Meth. Eng., 39, 3575-3623.   DOI   ScienceOn
84 Pichler, C., Lackner, R. and Mang, H.A. (2007), "A multiscale micromechanics model for the autogenousshrinkage deformation of early-age cement-based materials", Eng, Fracture Mech,, 74, 34-58.   DOI   ScienceOn
85 Pichler, B., Hellmichz, C. and Mang, H.A. (2007), "A combined fracture-micromechanics model for tensile strain-softening in brittle materials, based on propagation of interacting microcracks", Int. J. Numer. Anal. Meth. Geomech., 31, 111-132.   DOI   ScienceOn
86 Ramadoss, P. and Nagamani, K. (2008), "A new strength model for the high-performance fiber reinforced concrete", Comput. Concrete, 5(1), 21-36.   DOI
87 Reuss, A. (1929), "Berechnung der fliessgrenz von mischkristallen auf grund der plastizitatsbedingung fur einkristalle", Z. Angew Math. Mech., 9, 49-58.   DOI
88 Sanahuja, J., Dormieux, L. and Chanvillard, G. (2007). "Modeling elasticity of a hydrating cement paste", Cement Concrete Res., 37, 1427-1439.   DOI   ScienceOn
89 Riedel, W., Thoma, K., Hiermaier, S. and Schmolinske, E. (1999), "Penetration of reinforced concrete by BETAB- 500 numerical analysis using a new mecroscopic concrete model for hydrocode", Proceedings of 9 International Symposium, Interaction of the Effects of Munitions with Structures, Berlin, May.
90 Romualdi, J.P. and Batson, G.B. (1963), "Mechanics of crack arrest in concrete, Journal of Engineering Mechanics", Division of Proceedings of the American Soci. Civ. Eng., 89(EM3), 147-168.
91 Sanchez-Palencia, E. (1980), Non-homogeneous media and vibration theory: lecture notes in physics, Springer, NJ.
92 Shah, S.P. and Rangan, B.V. (1971), "Fiber reinforced concrete properties", ACI J., 68, 126-135.
93 Shin, K.J., Lee, K.M. and Chang, S.P. (2008), "Numerical modeling for cyclic crack bridging behavior of fiber reinforced cementitious composites", Struct. Eng. Mech., 30(2), 147-164.   DOI
94 Simone, A. and Sluys, L.J. (2004), "The use of displacement discontinuities in a rate dependent medium", Comput. Method. Appl. M., 193, 3015-3033.   DOI   ScienceOn
95 Smit, R.J.M., Brekelmans, W.A.M. and Meijer, H.E.H. (1998), "Prediction of the mechanical behavior of nonlinear heterogeneous systems by multilevel finite element modeling", Comput. Method. Appl. M., 155, 181-192.   DOI
96 Smilauer, V. and Bazant, Z. (2010), "Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method", Cement Concrete Res., 40, 197-207.   DOI
97 Smilauer, V. and Krejci, T. (2009), "Multiscale model for temperature distribution in hydrating concrete", Int. J. Multiscale Comp. Eng., 7, 135-151.   DOI
98 Smilauer, V. and Bittnar, Z. (2006), "Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste", Cement Concrete Res., 36, 1708-1718.   DOI   ScienceOn