Ning Tang;Chun-dong Hu;Yuan-lai Xie;Jiang-long Wei;Zhi-Wei Cui;Jun-Wei Xie;Zhuo Pan;Yao Jiang
Nuclear Engineering and Technology
/
v.54
no.11
/
pp.4134-4145
/
2022
The collimator is one of the high-heat-flux components used to avoid a series of vacuum and thermal problems. In this paper, the heat load distribution throughout the collimator is first calculated through experimental data, and a transient thermodynamic simulation analysis of the original model is carried out. The error of the pipe outlet temperature between the simulated and experimental values is 1.632%, indicating that the simulation result is reliable. Second, the model is optimized to improve the heat transfer performance of the collimator, including the contact mode between the pipe and the flange, the pipe material and the addition of a twisted tape in the pipe. It is concluded that the convective heat transfer coefficient of the optimized model is increased by 15.381% and the maximum wall temperature is reduced by 16.415%; thus, the heat transfer capacity of the optimized model is effectively improved. Third, to adapt the long-pulse steady-state operation of the experimental advanced superconducting Tokamak (EAST) in the future, steady-state simulations of the original and optimized collimators are carried out. The results show that the maximum temperature of the optimized model is reduced by 37.864% compared with that of the original model. The optimized model was changed as little as possible to obtain a better heat exchange structure on the premise of ensuring the consumption of the same mass flow rate of water so that the collimator can adapt to operational environments with higher heat fluxes and long pulses in the future. These research methods also provide a reference for the future design of components under high-energy and long-pulse operational conditions.
Kyu Lee Kang;Young Il Kim;Byeong Soo Son;Jin Yeong Park
Korean Journal of Optics and Photonics
/
v.34
no.3
/
pp.106-116
/
2023
In this paper, we designed a coaxial dual camera incorporating two optical systems-one for the visible rays and the other for far-infrared ones-with the aim of capturing images in both wavelength ranges. The far-infrared system, which uses an uncooled detector, has a sensor array of 640×480 pixels. The visible ray system has 1,945×1,097 pixels. The coaxial dual optical system was designed using a hot mirror beam splitter to minimize heat transfer caused by infrared rays in the visible ray optical system. The optimization process revealed that the final version of the dual camera system reached more than 90% of the fusion performance between two separate images from dual systems. Multiple rigorous testing processes confirmed that the coaxial dual camera we designed demonstrates meaningful design efficiency and improved image conformity degree compared to existing dual cameras.
Ji-Yoon Kim;Jeongmin Woo;Yongho Sohn;Jeong Ho Kim;Kee-Ahn Lee
Journal of Powder Materials
/
v.30
no.2
/
pp.146-155
/
2023
The Ti-6Al-4V lattice structure is widely used in the aerospace industry owing to its high specific strength, specific stiffness, and energy absorption. The quality, performance, and surface roughness of the additively manufactured parts are significantly dependent on various process parameters. Therefore, it is important to study process parameter optimization for relative density and surface roughness control. Here, the part density and surface roughness are examined according to the hatching space, laser power, and scan rotation during laser-powder bed fusion (LPBF), and the optimal process parameters for LPBF are investigated. It has high density and low surface roughness in the specific process parameter ranges of hatching space (0.06-0.12 mm), laser power (225-325 W), and scan rotation (15°). In addition, to investigate the compressive behavior of the lattice structure, a finite element analysis is performed based on the homogenization method. Finite element analysis using the homogenization method indicates that the number of elements decreases from 437,710 to 27 and the analysis time decreases from 3,360 to 9 s. In addition, to verify the reliability of this method, stress-strain data from the compression test and analysis are compared.
Fucheng Wang;Simpy Sanyal;Jiwon Choi;Jaewoong Cho;Yifan Hu;Xinyi Fan;Suresh Kumar Dhungel;Junsin Yi
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.36
no.3
/
pp.226-232
/
2023
As a potential alternative to flash memory, HfO2/Al2O3 stacks appear to be a viable option as charge capture layers in charge trapping memories. The paper undertakes a review of HfO2/Al2O3 stacks as charge trapping layers, with a focus on comparing the number, thickness, and post-deposition heat treatment and γ-ray and white x-ray treatment of such stacks. Compared to a single HfO2 layer, the memory window of the 5-layered stack increased by 152.4% after O2 annealing at ±12 V. The memory window enlarged with the increase in number of layers in the stack and the increase in the Al/Hf content in the stack. Furthermore, our comparison of the treatment of HfO2/Al2O3 stacks with varying annealing temperatures revealed that an increased annealing temperature resulted in a wider storage window. The samples treated with O2 and subjected to various γ radiation intensities displayed superior resistance. and the memory window increased to 12.6 V at ±16 V for 100 kGy radiation intensity compared to the untreated samples. It has also been established that increasing doses of white x-rays induced a greater number of deep defects. The optimization of stacking layers along with post-deposition treatment condition can play significant role in extending the memory window.
Water electrolysis holds great potential as a method for producing renewable hydrogen fuel at large-scale, and to replace the fossil fuels responsible for greenhouse gases emissions and global climate change. To reduce the cost of hydrogen and make it competitive against fossil fuels, the efficiency of green hydrogen production should be maximized. This requires superior electrocatalysts to reduce the reaction energy barriers. The development of catalytic materials has mostly relied on empirical, trial-and-error methods because of the complicated, multidimensional, and dynamic nature of catalysis, requiring significant time and effort to find optimized multicomponent catalysts under a variety of reaction conditions. The ultimate goal for all researchers in the materials science and engineering field is the rational and efficient design of materials with desired performance. Discovering and understanding new catalysts with desired properties is at the heart of materials science research. This process can benefit from machine learning (ML), given the complex nature of catalytic reactions and vast range of candidate materials. This review summarizes recent achievements in catalysts discovery for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The basic concepts of ML algorithms and practical guides for materials scientists are also demonstrated. The challenges and strategies of applying ML are discussed, which should be collaboratively addressed by materials scientists and ML communities. The ultimate integration of ML in catalyst development is expected to accelerate the design, discovery, optimization, and interpretation of superior electrocatalysts, to realize a carbon-free ecosystem based on green hydrogen.
Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.2
/
pp.279-290
/
2022
A superconducting fault current limiter(SFCL) is a power device that exploits superconducting transition to control currents and enhances the flexibility, stability and reliability of the power system within a few milliseconds. With a high phase transition speed, high critical current densities and little AC loss, high-temperature superconducting (HTS) wires are suitable for a resistive-type SFCL. However, HTS wires due to the lack of optimization research are rather inefficient to directly apply to a fault current limiter in terms of the design and capacity, for the existing method relied the characteristics. Therefore, in order to develop a suitable wire for an SFCL, it is necessary to enhance critical current uniformity, select optimal stabilizer materials and conducted research on the development of uniform stabilizer layering technology. The high temperature superconducting wires manufactured by this study get an average critical current of 804 A/12mm-width at the length of 710m; therefore, conducted research was able to secure economic performance by improving efficiency, reducing costs, and reducing size.
Journal of the Society of Naval Architects of Korea
/
v.60
no.3
/
pp.202-211
/
2023
The profile shops in shipyards produce section steels required for block production of ships. Due to the limitations of shipyard's production capacity, a considerable amount of work is already outsourced. In addition, the need to improve the productivity of the profile shops is growing because the production volume is expected to increase due to the recent boom in the shipbuilding industry. In this study, a scheduling optimization was conducted for a parallel welding line of the profile process, with the aim of minimizing tardiness and the number of set-up changes as objective functions to achieve productivity improvements. In particular, this study applied a dynamic scheduling method to determine the job sequence considering variability of processing time. A Markov decision process model was proposed for the job sequence problem, considering the trade-off relationship between two objective functions. Deep reinforcement learning was also used to learn the optimal scheduling policy. The developed algorithm was evaluated by comparing its performance with priority rules (SSPT, ATCS, MDD, COVERT rule) in test scenarios constructed by the sampling data. As a result, the proposed scheduling algorithms outperformed than the priority rules in terms of set-up ratio, tardiness, and makespan.
Irfan Khan;Xianchao Zhang;Ramesh Kumar Ayyasam;Rahman Ali
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.7
/
pp.1773-1793
/
2023
Automated machine learning, often referred to as "AutoML," is the process of automating the time-consuming and iterative procedures that are associated with the building of machine learning models. There have been significant contributions in this area across a number of different stages of accomplishing a data-mining task, including model selection, hyper-parameter optimization, and preprocessing method selection. Among them, preprocessing method selection is a relatively new and fast growing research area. The current work is focused on the recommendation of preprocessing methods, i.e., feature subset selection (FSS) algorithms. One limitation in the existing studies regarding FSS algorithm recommendation is the use of a single learner for meta-modeling, which restricts its capabilities in the metamodeling. Moreover, the meta-modeling in the existing studies is typically based on a single group of data characterization measures (DCMs). Nonetheless, there are a number of complementary DCM groups, and their combination will allow them to leverage their diversity, resulting in improved meta-modeling. This study aims to address these limitations by proposing an architecture for preprocess method selection that uses ensemble learning for meta-modeling, namely AutoFE-Sel. To evaluate the proposed method, we performed an extensive experimental evaluation involving 8 FSS algorithms, 3 groups of DCMs, and 125 datasets. Results show that the proposed method achieves better performance compared to three baseline methods. The proposed architecture can also be easily extended to other preprocessing method selections, e.g., noise-filter selection and imbalance handling method selection.
Jishen Li ;Bin Zhang ;Pengcheng Gao ;Fan Miao ;Jianqiang Shan
Nuclear Engineering and Technology
/
v.55
no.7
/
pp.2628-2641
/
2023
Nuclear safety is the lifeline for the development and application of nuclear energy. In severe accidents of pressurized water reactor (PWR), aerosols, as the main carrier of fission products, are suspended in the containment vessel, posing a potential threat of radioactive contamination caused by leakage into the environment. The gas-phase aerosols suspended in the containment will settle onto the wall or sump water through the natural deposition mechanism, thereby reducing atmospheric radioactivity. Aiming at the low accuracy of the aerosol model in the ISAA code, this paper improves the natural deposition model of aerosol in the containment. The aerosol dynamic shape factor was introduced to correct the natural deposition rate of non-spherical aerosols. Moreover, the gravity, Brownian diffusion, thermophoresis and diffusiophoresis deposition models were improved. In addition, ABCOVE, AHMED and LACE experiments were selected to validate and evaluate the improved ISAA code. According to the calculation results, the improved model can more accurately simulate the peak aerosol mass and respond to the influence of the containment pressure and temperature on the natural deposition rate of aerosols. At the same time, it can significantly improve the calculation accuracy of the residual mass of aerosols in the containment. The performance of improved ISAA can meet the requirements for analyzing the natural deposition behavior of aerosol in containment of advanced PWRs in severe accident. In the future, further optimization will be made to address the problems found in the current aerosol model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.