• Title/Summary/Keyword: performance factor

Search Result 8,041, Processing Time 0.041 seconds

Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data (라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정)

  • Meanne P. Andes;Mi-young Roh;Mi Young Lim;Gyeong-Lee Choi;Jung Su Jung;Dongpil Kim
    • Journal of Bio-Environment Control
    • /
    • v.32 no.4
    • /
    • pp.384-395
    • /
    • 2023
  • Since transpiration plays a key role in optimal irrigation management, knowledge of the irrigation demand of crops like tomatoes, which are highly susceptible to water stress, is necessary. One way to determine irrigation demand is to measure transpiration, which is affected by environmental factor or growth stage. This study aimed to estimate the transpiration amount of tomatoes and find a suitable model using mathematical and deep learning models using minute-by-minute data. Pearson correlation revealed that observed environmental variables significantly correlate with crop transpiration. Inside air temperature and outside radiation positively correlated with transpiration, while humidity showed a negative correlation. Multiple Linear Regression (MLR), Polynomial Regression model, Artificial Neural Network (ANN), Long short-term Memory (LSTM), and Gated Recurrent Unit (GRU) models were built and compared their accuracies. All models showed potential in estimating transpiration with R2 values ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 mm/min in the test dataset. Deep learning models outperformed the mathematical models; the GRU demonstrated the best performance in the test data with 0.948 R2 and 0.495 mm/min RMSE. The LSTM and ANN closely followed with R2 values of 0.946 and 0.944, respectively, and RMSE of 0.504 m/min and 0.511, respectively. The GRU model exhibited superior performance in short-term forecasts while LSTM for long-term but requires verification using a large dataset. Compared to the FAO56 Penman-Monteith (PM) equation, PM has a lower RMSE of 0.598 mm/min than MLR and Polynomial models degrees 2 and 3 but performed least among all models in capturing variability in transpiration. Therefore, this study recommended GRU and LSTM models for short-term estimation of tomato transpiration in greenhouses.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.

Performance and Carcass Ratio of Large-type Female Broiler at Different Stocking Densities (다양한 사육밀도에서 대형 육계 수컷의 생산성과 도체수율)

  • Na, Jae-Cheon;HwangBoa, Jong;Kim, Ji-Hyuk;Kang, Hwan-Gu;Kim, Min-Ji;Kim, Dong-Wook;Choi, Hee-Cheol;Hong, Eui-Chul
    • Korean Journal of Poultry Science
    • /
    • v.39 no.4
    • /
    • pp.305-310
    • /
    • 2012
  • This work was carried out to investigate performance and carcass yield of large-type broilers at different stocking densities. Treatments were T1 (9.1 birds/$m^2$), T2 (10.3 birds/$m^2$) and T3 (11.5 birds/$m^2$) by the stocking density. Four hundred eight 1-day-old Arbor Acre broiler chicks were used for six weeks (starter, 0~1 wks; earlier, 1~3 wks; finisher, 3~6 wks) and divided into 3 treatments (4 replications/treatment, 30, 34 or 38 birds/replication). Research indexes were rearing viability ratio, body weight, body weight gain, feed intake, feed conversion ratio, production efficiency factor and carcass ratio. Rearing viability ratio (%) was 89% or more for all treatments and there was no significant difference on weekly rearing viability ratio (%). Body weight of T2 was the greatest and that of T3 was the lowest at 1 weeks old (P<0.05). Body weight gain of T2 was the greatest and that of T3 was the lowest at 0~1 weeks old (P<0.05). However, body weight gain of T3 was the greatest and that of T1 was the lowest at 1~2 weeks old (P<0.05). Body weight gain of T2 was the greatest as 3,031 g among treatments at 0~6 weeks old (P<0.05). Feed intakes of T1, T2 and T3 were 1,417 g, 1,265 g and 1,355 g, respectively, and that of T1 was the greatest among treatments (P<0.05). There was no significant difference on body weight, body weight gain and feed intake. Feed conversion ratio of T1 was the greatest among treatments at 1~2 wks, 3~4 wks and 0~6 wks old (P<0.05). Production efficiency factors of T1, T2 and T3 were 363.5, 388.3 and 358.3, respectively, and there was no significant difference among treatments. Wing meat ratio of T1 was the higher compared to other treatments at the age of 4 wk (P<0.05). There was no significant difference on carcass ratio and partial meat ratio among treatments. Neck meat ratio of T2 was the lowest among treatments (P<0.05). This result may provide the standard data of different stocking densities for large-type broiler and the further research is needed.

Effect of Flywheel Weight on Engine Performance for the Small Diesel Engine (Flywheel의 중량(重量)이 소형(小型) 디젤기관(機關)의 성능(性能)에 미치는 영향(影響))

  • Jung, Hae Kook;Kim, Sung Rai;Myung, Byung Soo
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.143-152
    • /
    • 1988
  • This study was conducted to obtain basic data which affected engine performance of the power tiller being widely used in the rural area. Among the various factors affected engine performance, only flywheel weight was considered as the major factor in this study. Fuel consumption ratio, motoring loss, torque, vibration and mechanical efficiency of the engine tested were measured and analyzed on the four levels of flywheel weight (32.2, 29.7, 26.4, 24.2 kg). The results obtained were as follows: 1. The maximum output of 6 and 7.5 kW engine was 7.43 kW and 7.85 kW respectively. When flywheel weight was reduced from 32.2 kg to 24.2 kg, output power of the engine was increased 0.27 kW in 6 kW engine and increased 0.39 kW in 7.5 kW engine. 2. The fuel consumption ratio was decreased from 300.8 to 296.8 g/kW-hr in 6 kW engine and decreased from 313.6 to 312.8 g/kW-hr in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 3. The mechanical efficiencies of the engine was increased from 76.1 to 76.8% in 6 kW engine and increased from 76.7 to 77.0% in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. 4. When the flywheel weight was reduced from 32.2 kg to 24.2 kg, a tendency of a little decrease of vibration at X- and Z-axis in 6 kW engine and of a little increase of vibration at Y-axis in 6 kW engine and all directions in 7.5 kW engine was observed. 5. Motoring losses was decreased from 2.33 to l.76 kW in 6 kW engine and decreased from 2.46 to 1.84 kW in 7.5 kW engine when the flywheel weight was reduced from 32.2 kg to 24.2 kg. From the above results and the flywheel weight calculated theoretically, it was recommendable that the flywheel weight should be reduced about 7 kg in 6 kW engine and about 10 kg in 7.5 kW engine, respectively.

  • PDF

The Effect of Retailer-Self Image Congruence on Retailer Equity and Repatronage Intention (자아이미지 일치성이 소매점자산과 고객의 재이용의도에 미치는 영향)

  • Han, Sang-Lin;Hong, Sung-Tai;Lee, Seong-Ho
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.29-62
    • /
    • 2012
  • As distribution environment is changing rapidly and competition is more intensive in the channel of distribution, the importance of retailer image and retailer equity is increasing as a different competitive advantages. Also, consumers are not functionally oriented and that their behavior is significantly affected by the symbols such as retailer image which identify retailer in the market place. That is, consumers do not choose products or retailers for their material utilities but consume the symbolic meaning of those products or retailers as expressed in their self images. The concept of self-image congruence has been utilized by marketers and researchers as an aid in better understanding how consumers identify themselves with the brands they buy and the retailer they patronize. Although self-image congruity theory has been tested across many product categories, the theory has not been tested extensively in the retailing. Therefore, this study attempts to investigate the impact of self image congruence between retailer image and self image of consumer on retailer equity such as retailer awareness, retailer association, perceived retailer quality, and retailer loyalty. The purpose of this study is to find out whether retailer-self image congruence can be a new antecedent of retailer equity. In addition, this study tries to examine how four-dimensional retailer equity constructs (retailer awareness, retailer association, perceived retailer quality, and retailer loyalty) affect customers' repatronage intention. For this study, data were gathered by survey and analyzed by structural equation modeling. The sample size in the present study was 254. The reliability of the all seven dimensions was estimated with Cronbach's alpha, composite reliability values and average variance extracted values. We determined whether the measurement model supports the convergent validity and discriminant validity by Exploratory factor analysis and Confirmatory Factor Analysis. For each pair of constructs, the square root of the average variance extracted values exceeded their correlations, thus supporting the discriminant validity of the constructs. Hypotheses were tested using the AMOS 18.0. As expected, the image congruence hypotheses were supported. The greater the degree of congruence between retailer image and self-image, the more favorable were consumers' retailer evaluations. The all two retailer-self image congruence (actual self-image congruence and ideal self-image congruence) affected customer based retailer equity. This result means that retailer-self image congruence is important cue for customers to estimate retailer equity. In other words, consumers are often more likely to prefer products and retail stores that have images similar to their own self-image. Especially, it appeared that effect for the ideal self-image congruence was consistently larger than the actual self-image congruence on the retailer equity. The results mean that consumers prefer or search for stores that have images compatible with consumer's perception of ideal-self. In addition, this study revealed that customers' estimations toward customer based retailer equity affected the repatronage intention. The results showed that all four dimensions (retailer awareness, retailer association, perceived retailer quality, and retailer loyalty) had positive effect on the repatronage intention. That is, management and investment to improve image congruence between retailer and consumers' self make customers' positive evaluation of retailer equity, and then the positive customer based retailer equity can enhance the repatonage intention. And to conclude, retailer's image management is an important part of successful retailer performance management, and the retailer-self image congruence is an important antecedent of retailer equity. Therefore, it is more important to develop and improve retailer's image similar to consumers' image. Given the pressure to provide increased image congruence, it is not surprising that retailers have made significant investments in enhancing the fit between retailer image and self image of consumer. The enhancing such self-image congruence may allow marketers to target customers who may be influenced by image appeals in advertising.

  • PDF

A Study of Factors Associated with Software Developers Job Turnover (데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석)

  • Jeon, In-Ho;Park, Sun W.;Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.191-204
    • /
    • 2015
  • According to the '2013 Performance Assessment Report on the Financial Program' from the National Assembly Budget Office, the unfilled recruitment ratio of Software(SW) Developers in South Korea was 25% in the 2012 fiscal year. Moreover, the unfilled recruitment ratio of highly-qualified SW developers reaches almost 80%. This phenomenon is intensified in small and medium enterprises consisting of less than 300 employees. Young job-seekers in South Korea are increasingly avoiding becoming a SW developer and even the current SW developers want to change careers, which hinders the national development of IT industries. The Korean government has recently realized the problem and implemented policies to foster young SW developers. Due to this effort, it has become easier to find young SW developers at the beginning-level. However, it is still hard to recruit highly-qualified SW developers for many IT companies. This is because in order to become a SW developing expert, having a long term experiences are important. Thus, improving job continuity intentions of current SW developers is more important than fostering new SW developers. Therefore, this study surveyed the job continuity intentions of SW developers and analyzed the factors associated with them. As a method, we carried out a survey from September 2014 to October 2014, which was targeted on 130 SW developers who were working in IT industries in South Korea. We gathered the demographic information and characteristics of the respondents, work environments of a SW industry, and social positions for SW developers. Afterward, a regression analysis and a decision tree method were performed to analyze the data. These two methods are widely used data mining techniques, which have explanation ability and are mutually complementary. We first performed a linear regression method to find the important factors assaociated with a job continuity intension of SW developers. The result showed that an 'expected age' to work as a SW developer were the most significant factor associated with the job continuity intention. We supposed that the major cause of this phenomenon is the structural problem of IT industries in South Korea, which requires SW developers to change the work field from developing area to management as they are promoted. Also, a 'motivation' to become a SW developer and a 'personality (introverted tendency)' of a SW developer are highly importantly factors associated with the job continuity intention. Next, the decision tree method was performed to extract the characteristics of highly motivated developers and the low motivated ones. We used well-known C4.5 algorithm for decision tree analysis. The results showed that 'motivation', 'personality', and 'expected age' were also important factors influencing the job continuity intentions, which was similar to the results of the regression analysis. In addition to that, the 'ability to learn' new technology was a crucial factor for the decision rules of job continuity. In other words, a person with high ability to learn new technology tends to work as a SW developer for a longer period of time. The decision rule also showed that a 'social position' of SW developers and a 'prospect' of SW industry were minor factors influencing job continuity intensions. On the other hand, 'type of an employment (regular position/ non-regular position)' and 'type of company (ordering company/ service providing company)' did not affect the job continuity intension in both methods. In this research, we demonstrated the job continuity intentions of SW developers, who were actually working at IT companies in South Korea, and we analyzed the factors associated with them. These results can be used for human resource management in many IT companies when recruiting or fostering highly-qualified SW experts. It can also help to build SW developer fostering policy and to solve the problem of unfilled recruitment of SW Developers in South Korea.

An Analysis of the Moderating Effects of User Ability on the Acceptance of an Internet Shopping Mall (인터넷 쇼핑몰 수용에 있어 사용자 능력의 조절효과 분석)

  • Suh, Kun-Soo
    • Asia pacific journal of information systems
    • /
    • v.18 no.4
    • /
    • pp.27-55
    • /
    • 2008
  • Due to the increasing and intensifying competition in the Internet shopping market, it has been recognized as very important to develop an effective policy and strategy for acquiring loyal customers. For this reason, web site designers need to know if a new Internet shopping mall(ISM) will be accepted. Researchers have been working on identifying factors for explaining and predicting user acceptance of an ISM. Some studies, however, revealed inconsistent findings on the antecedents of user acceptance of a website. Lack of consideration for individual differences in user ability is believed to be one of the key reasons for the mixed findings. The elaboration likelihood model (ELM) and several studies have suggested that individual differences in ability plays an moderating role on the relationship between the antecedents and user acceptance. Despite the critical role of user ability, little research has examined the role of user ability in the Internet shopping mall context. The purpose of this study is to develop a user acceptance model that consider the moderating role of user ability in the context of Internet shopping. This study was initiated to see the ability of the technology acceptance model(TAM) to explain the acceptance of a specific ISM. According to TAM. which is one of the most influential models for explaining user acceptance of IT, an intention to use IT is determined by usefulness and ease of use. Given that interaction between user and website takes place through web interface, the decisions to accept and continue using an ISM depend on these beliefs. However, TAM neglects to consider the fact that many users would not stick to an ISM until they trust it although they may think it useful and easy to use. The importance of trust for user acceptance of ISM has been raised by the relational views. The relational view emphasizes the trust-building process between the user and ISM, and user's trust on the website is a major determinant of user acceptance. The proposed model extends and integrates the TAM and relational views on user acceptance of ISM by incorporating usefulness, ease of use, and trust. User acceptance is defined as a user's intention to reuse a specific ISM. And user ability is introduced into the model as moderating variable. Here, the user ability is defined as a degree of experiences, knowledge and skills regarding Internet shopping sites. The research model proposes that the ease of use, usefulness and trust of ISM are key determinants of user acceptance. In addition, this paper hypothesizes that the effects of the antecedents(i.e., ease of use, usefulness, and trust) on user acceptance may differ among users. In particular, this paper proposes a moderating effect of a user's ability on the relationship between antecedents with user's intention to reuse. The research model with eleven hypotheses was derived and tested through a survey that involved 470 university students. For each research variable, this paper used measurement items recognized for reliability and widely used in previous research. We slightly modified some items proper to the research context. The reliability and validity of the research variables were tested using the Crobnach's alpha and internal consistency reliability (ICR) values, standard factor loadings of the confirmative factor analysis, and average variance extracted (AVE) values. A LISREL method was used to test the suitability of the research model and its relating six hypotheses. Key findings of the results are summarized in the following. First, TAM's two constructs, ease of use and usefulness directly affect user acceptance. In addition, ease of use indirectly influences user acceptance by affecting trust. This implies that users tend to trust a shopping site and visit repeatedly when they perceive a specific ISM easy to use. Accordingly, designing a shopping site that allows users to navigate with heuristic and minimal clicks for finding information and products within the site is important for improving the site's trust and acceptance. Usefulness, however, was not found to influence trust. Second, among the three belief constructs(ease of use, usefulness, and trust), trust was empirically supported as the most important determinants of user acceptance. This implies that users require trustworthiness from an Internet shopping site to be repeat visitors of an ISM. Providing a sense of safety and eliminating the anxiety of online shoppers in relation to privacy, security, delivery, and product returns are critically important conditions for acquiring repeat visitors. Hence, in addition to usefulness and ease of use as in TAM, trust should be a fundamental determinants of user acceptance in the context of internet shopping. Third, the user's ability on using an Internet shopping site played a moderating role. For users with low ability, ease of use was found to be a more important factors in deciding to reuse the shopping mall, whereas usefulness and trust had more effects on users with high ability. Applying the EML theory to these findings, we can suggest that experienced and knowledgeable ISM users tend to elaborate on such usefulness aspects as efficient and effective shopping performance and trust factors as ability, benevolence, integrity, and predictability of a shopping site before they become repeat visitors of the site. In contrast, novice users tend to rely on the low elaborating features, such as the perceived ease of use. The existence of moderating effects suggests the fact that different individuals evaluate an ISM from different perspectives. The expert users are more interested in the outcome of the visit(usefulness) and trustworthiness(trust) than those novice visitors. The latter evaluate the ISM in a more superficial manner focusing on the novelty of the site and on other instrumental beliefs(ease of use). This is consistent with the insights proposed by the Heuristic-Systematic model. According to the Heuristic-Systematic model. a users act on the principle of minimum effort. Thus, the user considers an ISM heuristically, focusing on those aspects that are easy to process and evaluate(ease of use). When the user has sufficient experience and skills, the user will change to systematic processing, where they will evaluate more complex aspects of the site(its usefulness and trustworthiness). This implies that an ISM has to provide a minimum level of ease of use to make it possible for a user to evaluate its usefulness and trustworthiness. Ease of use is a necessary but not sufficient condition for the acceptance and use of an ISM. Overall, the empirical results generally support the proposed model and identify the moderating effect of the effects of user ability. More detailed interpretations and implications of the findings are discussed. The limitations of this study are also discussed to provide directions for future research.

Risk Factor Analysis for Preventing Foodborne Illness in Restaurants and the Development of Food Safety Training Materials (레스토랑 식중독 예방을 위한 위해 요소 규명 및 위생교육 매체 개발)

  • Park, Sung-Hee;Noh, Jae-Min;Chang, Hye-Ja;Kang, Young-Jae;Kwak, Tong-Kyung
    • Korean journal of food and cookery science
    • /
    • v.23 no.5
    • /
    • pp.589-600
    • /
    • 2007
  • Recently, with the rapid expansion of the franchise restaurants, ensuring food safety has become essential for restaurant growth. Consequently, the need for food safety training and related material is in increasing demand. In this study, we identified potentially hazardous risk factors for ensuring food safety in restaurants through a food safety monitoring tool, and developed training materials for restaurant employees based on the results. The surveyed restaurants, consisting of 6 Korean restaurants and 1 Japanese restaurant were located in Seoul. Their average check was 15,500 won, ranging from 9,000 to 23,000 won. The range of their total space was 297.5 to $1322.4m^2$, and the amount of kitchen space per total area ranged from 4.4 to 30 percent. The mean score for food safety management performance was 57 out of 100 points, with a range of 51 to 73 points. For risk factor analysis, the most frequently cited sanitary violations involved the handwashing methods/handwashing facilities supplies (7.5%), receiving activities (7.5%), checking and recording of frozen/refrigerated foods temperature (0%), holding foods off the floor (0%), washing of fruits and vegetables (42%), planning and supervising facility cleaning and maintaining programs of facilities (50%), pest control (13%), and toilet equipped/cleaned (13%). Base on these results, the main points that were addressed in the hygiene training of restaurant employees included 4 principles and 8 concepts. The four principles consisted of personal hygiene, prevention of food contamination, time/temperature control, and refrigerator storage. The eight concepts included: (1) personal hygiene and cleanliness with proper handwashing, (2) approved food source and receiving management (3) refrigerator and freezer control, (4) storage management, (5) labeling, (6) prevention of food contamination, (7) cooking and reheating control, and (8) cleaning, sanitation, and plumbing control. Finally, a hygiene training manual and poster leaflets were developed as a food safety training materials for restaurants employees.

A Study of the Reactive Movement Synchronization for Analysis of Group Flow (그룹 몰입도 판단을 위한 움직임 동기화 연구)

  • Ryu, Joon Mo;Park, Seung-Bo;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.79-94
    • /
    • 2013
  • Recently, the high value added business is steadily growing in the culture and art area. To generated high value from a performance, the satisfaction of audience is necessary. The flow in a critical factor for satisfaction, and it should be induced from audience and measures. To evaluate interest and emotion of audience on contents, producers or investors need a kind of index for the measurement of the flow. But it is neither easy to define the flow quantitatively, nor to collect audience's reaction immediately. The previous studies of the group flow were evaluated by the sum of the average value of each person's reaction. The flow or "good feeling" from each audience was extracted from his face, especially, the change of his (or her) expression and body movement. But it was not easy to handle the large amount of real-time data from each sensor signals. And also it was difficult to set experimental devices, in terms of economic and environmental problems. Because, all participants should have their own personal sensor to check their physical signal. Also each camera should be located in front of their head to catch their looks. Therefore we need more simple system to analyze group flow. This study provides the method for measurement of audiences flow with group synchronization at same time and place. To measure the synchronization, we made real-time processing system using the Differential Image and Group Emotion Analysis (GEA) system. Differential Image was obtained from camera and by the previous frame was subtracted from present frame. So the movement variation on audience's reaction was obtained. And then we developed a program, GEX(Group Emotion Analysis), for flow judgment model. After the measurement of the audience's reaction, the synchronization is divided as Dynamic State Synchronization and Static State Synchronization. The Dynamic State Synchronization accompanies audience's active reaction, while the Static State Synchronization means to movement of audience. The Dynamic State Synchronization can be caused by the audience's surprise action such as scary, creepy or reversal scene. And the Static State Synchronization was triggered by impressed or sad scene. Therefore we showed them several short movies containing various scenes mentioned previously. And these kind of scenes made them sad, clap, and creepy, etc. To check the movement of audience, we defined the critical point, ${\alpha}$and ${\beta}$. Dynamic State Synchronization was meaningful when the movement value was over critical point ${\beta}$, while Static State Synchronization was effective under critical point ${\alpha}$. ${\beta}$ is made by audience' clapping movement of 10 teams in stead of using average number of movement. After checking the reactive movement of audience, the percentage(%) ratio was calculated from the division of "people having reaction" by "total people". Total 37 teams were made in "2012 Seoul DMC Culture Open" and they involved the experiments. First, they followed induction to clap by staff. Second, basic scene for neutralize emotion of audience. Third, flow scene was displayed to audience. Forth, the reversal scene was introduced. And then 24 teams of them were provided with amuse and creepy scenes. And the other 10 teams were exposed with the sad scene. There were clapping and laughing action of audience on the amuse scene with shaking their head or hid with closing eyes. And also the sad or touching scene made them silent. If the results were over about 80%, the group could be judged as the synchronization and the flow were achieved. As a result, the audience showed similar reactions about similar stimulation at same time and place. Once we get an additional normalization and experiment, we can obtain find the flow factor through the synchronization on a much bigger group and this should be useful for planning contents.

A Study on the Characteristics of Enterprise R&D Capabilities Using Data Mining (데이터마이닝을 활용한 기업 R&D역량 특성에 관한 탐색 연구)

  • Kim, Sang-Gook;Lim, Jung-Sun;Park, Wan
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • As the global business environment changes, uncertainties in technology development and market needs increase, and competition among companies intensifies, interests and demands for R&D activities of individual companies are increasing. In order to cope with these environmental changes, R&D companies are strengthening R&D investment as one of the means to enhance the qualitative competitiveness of R&D while paying more attention to facility investment. As a result, facilities or R&D investment elements are inevitably a burden for R&D companies to bear future uncertainties. It is true that the management strategy of increasing investment in R&D as a means of enhancing R&D capability is highly uncertain in terms of corporate performance. In this study, the structural factors that influence the R&D capabilities of companies are explored in terms of technology management capabilities, R&D capabilities, and corporate classification attributes by utilizing data mining techniques, and the characteristics these individual factors present according to the level of R&D capabilities are analyzed. This study also showed cluster analysis and experimental results based on evidence data for all domestic R&D companies, and is expected to provide important implications for corporate management strategies to enhance R&D capabilities of individual companies. For each of the three viewpoints, detailed evaluation indexes were composed of 7, 2, and 4, respectively, to quantitatively measure individual levels in the corresponding area. In the case of technology management capability and R&D capability, the sub-item evaluation indexes that are being used by current domestic technology evaluation agencies were referenced, and the final detailed evaluation index was newly constructed in consideration of whether data could be obtained quantitatively. In the case of corporate classification attributes, the most basic corporate classification profile information is considered. In particular, in order to grasp the homogeneity of the R&D competency level, a comprehensive score for each company was given using detailed evaluation indicators of technology management capability and R&D capability, and the competency level was classified into five grades and compared with the cluster analysis results. In order to give the meaning according to the comparative evaluation between the analyzed cluster and the competency level grade, the clusters with high and low trends in R&D competency level were searched for each cluster. Afterwards, characteristics according to detailed evaluation indicators were analyzed in the cluster. Through this method of conducting research, two groups with high R&D competency and one with low level of R&D competency were analyzed, and the remaining two clusters were similar with almost high incidence. As a result, in this study, individual characteristics according to detailed evaluation indexes were analyzed for two clusters with high competency level and one cluster with low competency level. The implications of the results of this study are that the faster the replacement cycle of professional managers who can effectively respond to changes in technology and market demand, the more likely they will contribute to enhancing R&D capabilities. In the case of a private company, it is necessary to increase the intensity of input of R&D capabilities by enhancing the sense of belonging of R&D personnel to the company through conversion to a corporate company, and to provide the accuracy of responsibility and authority through the organization of the team unit. Since the number of technical commercialization achievements and technology certifications are occurring both in the case of contributing to capacity improvement and in case of not, it was confirmed that there is a limit in reviewing it as an important factor for enhancing R&D capacity from the perspective of management. Lastly, the experience of utility model filing was identified as a factor that has an important influence on R&D capability, and it was confirmed the need to provide motivation to encourage utility model filings in order to enhance R&D capability. As such, the results of this study are expected to provide important implications for corporate management strategies to enhance individual companies' R&D capabilities.