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Introduction

Transpiration is a fundamental process involving losing 

water as water vapor, starting from the tiny organ, stomata in 

their leaves. Nearly all water taken up by plants is lost by 

transpiration, and only a small fraction is utilized. This 

process occurs simultaneously with evaporation, called 

evapotranspiration (ET). Since they occur simultaneously, 

it is difficult to distinguish between the two processes. 

However, during the early stages of crop growth, all water 

loss is attributed to evaporation, while during full crop 

cover, more than 90% is due to transpiration (Allen et al., 

1998). The water movement from transpiration plays a vital 

role in maintaining the water balance of plants (Hazlett, 

2022). This equilibrium is important to prevent dehydration 

and water stress in the short term and to support the growth 

and production of fruits and flowers in the long-term per-

spective. To attain equilibrium, water uptake from the root 

zone must equal the evaporation rate (Geelen et al., 2020).

Sufficient water can be provided for the longer term if 

irrigation needs are aligned with the evaporation energy 

received by the plant (Geelen et al., 2020). Among the 

points that contribute to plant evaporation are temperature, 

humidity, air movement, and light intensity. Increasing or 

decreasing the level of these energy inputs can either 

increase or decrease the transpiration rate (PASSeL, 2023). 

Irrigation is essential to producing most vegetables to attain 
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good and high-quality yields. Vegetables such as cucumber, 

tomato, lettuce, zucchini, and celery have a very high per-

centage of water content in the cells, thus extremely vulnerable 

to water stress and drought conditions (Yildirim and Ekinci, 

2022). However, over-irrigation can inhibit germination and 

root development and decrease vegetable quality and post-

harvest life (Yildirim and Ekinci, 2022). Regardless of the 

crop yield, the importance of appropriate irrigation technology 

is increasing regarding resource conservation in hydroponics.

One way of obtaining plant water demand is by measuring 

water lost by transpiration (Sanchez et al., 2012). In crop 

cultivation under a greenhouse with water use efficiency 

(WUE) reported to be three to 10 times higher than under 

open field conditions, evapotranspiration knowledge may 

help improve the plant environment and WUE (Katsoulas 

and Stanghellini, 2019). The lower evaporative demand 

inside the greenhouse than the open field reduces water 

requirement and consequently increases water use efficiency 

(Gallardo et al., 2013). Furthermore, being at the forefront 

of “precision agriculture”, greenhouses increasingly need 

precision irrigation and climate management. Hence, know-

ledge of crop transpiration at relatively short intervals (hours 

and minutes) is necessary (Katsoulas and Stanghellini, 

2019). Measuring transpiration on a time scale using weighing 

lysimeters or sap flow measurement takes more time and 

costs, so crop transpiration models are commonly adopted 

(Katsoulas and Stanghellini, 2019). The common models 

for predicting evapotranspiration and transpiration are 

Penman-Monteith (PM) (Allen et al., 1998), Shuttleworth- 

Wallace (SW) (Shuttleworth and Wallace, 1985), and 

Priestly-Taylor (PT) (Priestly and Taylor, 1972) models 

(Shao et al., 2022). PM is the most recommended worldwide 

standard method because it integrates energy, aerodynamic, 

and atmospheric parameters (Chia et al., 2022). Other 

mathematical models that include regression models, such 

as linear, exponential, logarithmic, polynomial, and power, 

have been used to estimate the evaporation and transpiration 

of crops such as Maize (Saedi, 2022). Multiple linear 

regression (MLR) (Tu et al., 2019; Bera et al., 2021; Li et al., 

2023) was also used to predict transpiration in canopies. 

However, applications of mathematical models are still 

limited because their parameterization is very complex and 

needs a large number of observation data (Fan et al., 2021) 

and thus impractical in regions where data collection 

facilities are incomplete (Chia et al., 2022).

Recently, machine learning models have been successfully 

used to estimate evapotranspiration withlimited meteoro-

logical data (Ferreira and da Cunha, 2020). These models 

can capture complex relationships between input and output 

data, thus making them powerful tools in evapotranspiration 

modeling (Ferreira and da Cunha, 2020). Moreover, the 

machine learning techniques can capture hydrological time 

series such as evapotranspiration by utilizing solely a series 

of predictors without any knowledge of their physical 

processes (Mehdizadeh et al., 2021; Mohammadi and 

Mehdizadeh, 2020; Mohammadi et al., 2021; Elbeltagi et 

al., 2021). Several machine learning models to estimate the 

transpiration of different crops were assessed, such as 

artificial neural network (ANN) (Ferreira and da Cunha, 

2020; Yong et al., 2023; Tunali et al., 2023), convolutional 

neural network (CNN) (Ferreira and da Cunha, 2020; Li et 

al., 2023), long short-term memory (LSTM) (Chen et al., 

2020; Chia et al., 2022; Li et al., 2023), gate recurrent unit 

(GRU) (Chia et al., 2022; Li et al., 2023). The studies above 

showed the promising performance of machine learning 

models in estimating transpiration.

Despite several studies conducted to predict transpiration 

using different methods, few studies have been conducted 

comparing the prediction performance of mathematical 

(MLR and polynomial) models and deep learning (ANN, 

LSTM, and GRU) models using data on smaller time scales 

(every minute). To reduce overestimated irrigation amount, 

instantaneous transpiration with shorter intervals is more 

favorable than daily accumulated, conventionally applied 

for irrigation (Shin et al., 2014). Hence, this study aims to 

estimate tomato transpiration through mathematical and 

deep learning models using every minute data and to identify 

the suitable model. 

Materials and Methods

1. Data Gathering, Preprocessing, and Analysis

Tomatoes (Solanum lycopersicum L.) were grown inside 

the Venlo-type greenhouse at Protected Horticulture Research 

Institute (PHRI), Haman, Republic of Korea. Seeds were 

sown on October 11, 2022, and transplanted in coconut coir 
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substrate on November 17, 2022. Every minute data of 

parameters which include weight of the plant and substrate 

(kg), slab temperature (°C), volume of irrigation (mL) and 

drain (mL), inside air temperature (°C), humidity (%), electrical 

conductivity (mS/cm), pH, outside air temperature (°C), and 

solar radiation (W/m2) were gathered. Every minute, a load 

cell was used to get the crop weight data (Incrocci et al., 

2020). The transpiration rate of tomatoes was obtained based 

on the weight change of plants in each unit of time (Shin et 

al., 2014). Weight changes due to crop management, such as 

pruning, harvesting, and evaporation at the surface of the 

substrate, were not included in transpiration (Jo and Shin, 

2021; Shin and Son, 2015). Data considered in this study 

were those obtained from January 2, 2023, to May 2, 2023. 

These were imported in Python 3.10.9 for preprocessing, 

analysis, and model building. Missing values of outside 

radiation were interpolated with a linear method in the 

Python library Pandas 2.1.1. Moving average calculations 

were performed to smooth out fluctuations in data. A 30 

window (number of data points) was applied to transpiration, 

and a 50 window for outside radiation. The strength and 

direction of a relationship between transpiration and 

dependent variables (slab temperature, volume of water 

used, inside air temperature, humidity, EC, pH, outside air 

temperature, and solar radiation) were obtained using the 

Pearson correlation coefficient. A two-tailed correlation 

analysis at a 1% significance level was done using SciPy. 

Stats package from SciPy library in Python. Scatter plots of 

transpiration versus dependent variables were plotted to 

visualize the relationship. The relationship between trans-

piration and independent variables was also observed by 

plotting the line plot of variables over time. For model 

building, the data were split into training (70%), validation 

(15%) and testing (15%) datasets. Inputs were normalized 

using MinMaxScaler to improve training efficiency. 

2. Model Building

Seven models were developed to estimate tomato trans-

piration: multiple linear regression model (MLR), polynomial 

regression models degrees 2, 3, and 4, Artificial Neural 

Network (ANN), long short-term model (LSTM), and 

Gated Recurrent Unit (GRU) model. To get the best archit-

ecture, trial and error were performed in building ANN, 

LSTM, and GRU models. All models were built using appli-

cable features, classes, and libraries in Python within the 

Jupyter Notebook environment.

2.1 Multiple Linear Regression (MLR) Model

MLR is an extension of simple linear regression, which 

estimates the relationship between a response variable y and 

an independent variable x. However, the MLR model is 

extended to include more than independent variables (x1, x2, 

…xp), producing a multivariate model (Tranmer et al., 2020). 

In this model, we assumed that the dependent variable is 

directly related to a linear combination of the independent 

variables. The equation (Eq.1) for MLR has the same form 

as that for simple linear regression but has more terms:
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where Yi - dependent variable

βo - intercept or constant

β1, β1, … βk - slope of regression surface

xi1, xi2, …xik - independent variables 

ei - error term

2.2 Polynomial Regression Model

Polynomial regression is a special case of multiple regres-

sion, in which the relationship between the independent and 

dependent variables is modeled in the nth-degree polynomial 

(Ostertagová, 2012). This model is useful when the relation-

ship between variables is curvilinear (Ostertagová, 2012). 

This can be expressed in the following equation (Eq. 2):
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where Yi - dependent variable

βo - intercept or constant

β1, β2, … βk - slope of regression surface

xi - independent variables

k - degree of polynomial

ei - error term

2.3 Artificial Neural Networks (ANN)

ANNs are biologically inspired computational networks 

(Park and Lek, 2016). These are commonly presented as 
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interconnected “neurons” systems that can compute input 

values by feeding information through the network (Dahikar 

and Rode, 2014). Typically, a minimum of three layers 

consisting of input, hidden, and output layers is required in 

developing ANN, but hidden layers can be extended 

depending on specific problems (Bejo et al., 2014). In this 

study, all deep learning architectures were implemented and 

trained using the PyTorch 2.0 framework. The feed-forward 

neural network was implemented where information flows 

from the input layer through hidden layers to the output 

layer. The ANN has seven input layers and two hidden 

layers, with 28 nodes in the first hidden layer and 14 nodes 

in the second. The output layer has only one node, which is 

the transpiration rate. Rectified linear unit (ReLU) was the 

activation function used from the input layer to the first and 

second layers, while linear activation function from the 

second layer to the output layer. To reduce losses and provide 

the most accurate results, an adaptive moment estimation 

(Adam) optimizer was used in the training (Chauhan, 2020). 

Early stopping at a patience of 20 was applied to prevent 

overfitting and improve generalization (Vanja et al., 2021). 

The training was performed for 100 epochs with a batch size 

of 64.

2.4 Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU)

LSTM architecture is a special recurrent neural network 

(RNN) with an appropriate gradient-based learning algorithm 

to overcome error backflow problems (Tian et al., 2020). It 

has chain-like modules wherein each repeating module 

contains a memory block designed to store information over 

long periods (Zhang et al., 2018). The memory block 

comprises four parts: the cell state or CEC (Constant Error 

Carousel) and three special multiplicative units called gates. 

The input, forget, and output gates in each memory block 

can control the flow of information inside the memory block 

(Zhang et al., 2018). The forget gate decides which values of 

the previous cell state should be discarded and which should 

be kept. Then, the input gate selects values from the last 

hidden state and the current input to update by passing them 

through the sigmoid activation function. The cell state 

candidate regulates the flow of information in the network 

by using an activation function on the previous hidden state 

and current input. The candidate calculated in the cell state 

is then added to the previous cell state. Lastly, the output gate 

calculates the current hidden state by passing the previous 

hidden state and the current input through the sigmoid 

activation function to select which new information should 

be considered. The current cell state value is then passed 

through the tanh function, and the products of those functions 

are multiplied. During backpropagation training, the gradient 

flow is relatively undisturbed because only a few linear 

operations are performed on the cell state, hence limiting the 

occurrence of the vanishing gradient problem (Zarzycki and 

Lawrynczuk, 2021). 

In this study, before initializing the LSTM model, the 

input sequence length was set to 60 time steps. The LSTM 

structure has two LSTM layers, with the first layer containing 

28 memory cells and the second layer containing 14. The 

output layer has a single neuron of transpiration. The model 

was trained at a learning rate 0.001 and optimized using 

Adam optimizer. Early stopping at Patience 20 was also 

applied. The training was performed for 100 epochs with a 

batch size of 64. 

GRU is an RNN gating mechanism like LSTM but with 

only two gates, namely, reset gate and update gate, thus 

higher computational efficiency and faster convergence. 

GRU structure is also more concise and includes fewer 

parameters than LSTM, which minimizes overfitting and 

improves training efficiency (Li et al., 2022). The reset gate 

selects which information to discard from the previous 

hidden state and input values, while the update gate selects 

which information from the previous hidden state should be 

kept and passed along to the next steps. The candidate state 

gate calculates the candidate for a future hidden state by 

multiplying the previous state with the reset gate's output. 

Then, the new data from the input is added to the remaining 

information. Finally, the tanh function is applied to the data 

to regulate the information flow. The length of the input 

sequence was set to 60 time steps before initializing the 

GRU model. The GRU structure has two GRU layers, with 

the first layer containing 28 neurons and the second layer 

containing 14 neurons, while the output layer has a single 

neuron that yields the output, which is transpiration. The 

model was trained at a learning rate 0.001 and optimized 

using Adam optimizer. Early stopping at Patience 20 was 



Meanne P. Andes · Mi-young Roh · Mi Young Lim · Gyeong-Lee Choi · Jung Su Jung · Dongpil Kim

388 Journal of Bio-Environment Control, Vol. 32, No. 4, 2023

also applied. The training was performed for 100 epochs 

with a batch size of 64.

2.5 Calculation of transpiration using Penman-Monteith 

(PM) Equation

The FAO56 PM equation has been generally recommended 

as the standard method for estimating evapotranspiration 

(ETo) for most crops and cropping systems (Incrocci et al., 

2020; Allen et al., 1998). The FAO-styled “reduced form” 

of PM equation results that has also been adopted by 

ASCE-EWRI in 200 was considered in the calculation of 

evapotranspiration (Allen et al., 2006) (Eq. 5)
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where ETo - evapotranspiration (mm/hr)

Δ - slope vapor pressure curve (kpa/°C)

Rn - net radiation at crop surface (MJ/m2/hr)

G - soil heat flux density (MJ/m2/hr)

T - mean hourly air temperature at 2 m height (°C)

u2 - wind speed at 2m height, 

u2 = 208/ra; ra = 295 s/m; ra - aerodynamic resistance 

(Fernandez et al., 2011)

es - saturation vapor pressure (kPa)

ea - actual vapor pressure (kPa)

Cn - crop coefficient, Cn=900 (24-h), 

Cn = 37 (hourly time steps)

Cd - daylight coefficient, Cd= 0.34 

(Allen et al., 1998)

To get crop transpiration, Eq. 6 was used: 
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
 (6)

where kc is the crop coefficient, the crop coefficient values 

for tomatoes (Kcmax = 1.4, Kcend = 0.85) grown in a Medit-

erranean greenhouse obtained by Magan et al. (2008) were 

used. Transpiration calculated using the PM equation was 

compared to the measured transpiration. The R2 and RMSE 

between measured and calculated values were obtained and 

compared to the R2 and RMSE of the models.

2.6 Model Evaluation

Coefficient of Determination (R2) and Root Mean Square 

Errors (RMSE) were used to evaluate the models' performance. 

The evaluation was conducted using NumPy and Scikit- 

Learn (Sklearn) library in Python. The values of R2 and RMSE 

of the models developed were compared to determine the 

best-fitted model to estimate tomato transpiration.

Results and Discussion

1. Correlation between the environmental variables

The Pearson correlation coefficient of the variables showed 

a significant correlation of all measured independent variables 

(humidity, inside air temperature, outside radiation, EC, pH, 

slab temp, outside temperature, irrigation, drain, month, and 

hour) with the transpiration except for day and minute 

(Table 1). Outside radiation and inside air temperature 

showed the highest significant positive correlation with 

transpiration, with correlation coefficients of 0.793 and 0.725, 

respectively. This indicates that increased outside radiation 

and inside air temperature can significantly increase trans-

piration (De Wit, 1958; Jolliet and Bailey, 1992; Zhu et al., 

2022). In terms of humidity, a negative correlation shows 

that an increase in humidity leads to a decrease in transpiration 

rate (Zhu et al., 2022). The result of correlation analysis was 

Table 1. Correlation coefficient of independent variables.

Variables Correlation Coefficient

Humidity – 0.297*

Inside air temperature 0.725*

Outside radiation 0.842*

EC 0.113*

pH 0.168*

Slab temperature 0.277*

Outside air temperature 0.165*

Irrigation 0.023*

Drain 0.023*

Month – 0.188*

Day – 0.004

Hour – 0.074*

Minute 0.003

*Significant at p <0.01 level (2-tailed).
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used as a basis for selecting input features for building 

estimation models to ensure their relevance in predicting the 

target variables. However, not all variables with significant 

correlation were chosen for model building. This study 

considered the first three variables with the highest correlation 

(outside radiation, greenhouse air temperature, and humidity).

Furthermore, air temperature, relative humidity, and 

radiation are environmental variables that greatly influence 

crop transpiration (Jo and Shin, 2021). Fig. 1 shows the 

scatter plot depicting the relationship trend between inde-

pendent variables and transpiration. In terms of month and 

hour, despite a significant correlation, the direction of the 

relationship does not perfectly reflect the actual scenario. 

Hence, the decision to include these variables, including the 

day and minute in model building, was based on the observed 

seasonality of transpiration over time . This is based on the 

assumption made in forecasting that there is an underlying 

pattern which described the event and conditions and that it 

repeats in the future. Identification of patterns and choice of 

model, particularly in time series, is critical to facilitate 

forecasting (Nwogu et al., 2016).

Fig. 1. Correlation between the collected variables and transpiration within the greenhouse. Individual data points are represented by blue dots, while 

the regression line is depicted in red.

Table 2. Model-wise RMSE and R2 values across training, validation, and testing phases.

Model
Training Validation Testing

R2 RMSE R2 RMSE R2 RMSE

MLR 0.765 1.061 0.767 1.046 0.770 1.038

Polynomial Degree 2 0.866 0.800 0.867 0.791 0.869 0.783

Polynomial Degree 3 0.905 0.673 0.905 0.668 0.906 0.663

Polynomial Degree 4 0.931 0.575 0.931 0.568 0.932 0.565

ANN 0.946 0.510 0.945 0.509 0.944 0.511

LSTM 0.948 0.497 0.946 0.502 0.946 0.504

GRU 0.952 0.480 0.948 0.496 0.948 0.495
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2. Comparison of Model Performance

Models built along with the performance evaluation 

results are shown in Table 2. All models showed potential in 

estimating transpiration rate using data on radiation, 

temperature, humidity, and time with R2 values ranging 

from 0.770 to 0.948 and RMSE of 0.495 mm/min to 1.038 

mm/min in the testing. During training and validation, the 

R2 and RMSE of the models did not go far from each other, 

with an R2 range of 0.001－0.004 and 0.001－016 for 

RMSE; hence, overfitting was successfully managed. Early 

stopping, specifically in the building ANN, LSTM, and 

GRU models, helped prevent overfitting and reduced its 

effects on the model (Ying, 2019). For mathematical models, 

results showed that Polynomial models degrees 2, 3, and 4 

have better estimation performance in the testing compared 

to the MLR model (R2 = 0.77, RMSE= 1.038mm/min), 

hence showing that the relationship between the independent 

variables and transpiration is more curvilinear than linear. 

Among the regression models, polynomial degree 4 (P4) 

model showed best performance (R2 = 0.93, RMSE = 0.565 

mm/min). The polynomial model is useful when the 

relationship between variables is curvilinear (Ostertagová, 

2012).

Meanwhile, the performance of deep learning models 

such as ANN, LSTM, and GRU was better than that of 

mathematical models. Unlike deep learning models, which 

do not require knowledge of internal factors and can be 

constructed with limited data, mathematical models need 

observation data (Fan et al., 2021). The addition of more 

relevant input variables can further improve the performance 

of mathematical models. Fig. 2 shows predictions from 

January 17 to January 2023, comparing the performance of 

MLR, 4th degree Polynomial (P4), ANN, GRU and LSTM 

models. Among all the models, the best performance was 

observed in the GRU model with R2 of 0.948 in testing and 

RMSE of 0.495 mm/min. Compared to LSTM, the GRU 

structure is more concise and has fewer parameters, which 

minimizes overfitting and improves training efficiency (Li 

et al., 2022). However, the performance of LSTM and ANN 

models did not vary much from GRU, which yielded R2 of 

0.946 and 0.944, respectively, and RMSE of 0.504 mm/min 

and 0.511 mm/min. In a study conducted by Chia et al. 

(2022), it was found that the LSTM and GRU models have 

tremendous potential in estimating evapotranspiration if just 

designed with a purpose, such as integrating an optimization 

algorithm. LSTM and GRU, the ANN model showed 

promising performance in predicting evapotranspiration in 

some crops like tomato (Tunali et al., 2023) and paprika 

(Nam et al., 2019). 

The 1:1 comparison of actual transpiration with the 

transpiration predicted by the models is shown in Fig. 3. The 

improvement in model performance from MLR to GRU in 

predicting transpiration can be observed as the distance of 

the data points got closer to the 1:1 line. However, more 

dispersed values can be observed in the actual transpiration 

against transpiration calculated using the PM equation. 

Similar to the findings of Fernandez et al. (2010), the PM 

equation underestimated the actual transpiration, as shown 

by more predicted values that fall far below the 1:1 line. 

RMSE (0.598 mm/min) offers better performance in pre-

Fig. 2. Time series predictions from January 17 to January 22, 2023, comparing the performance of MLR, 4th-degree Polynomial (P4), ANN, GRU, 

and LSTM models.
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diction compared to MLR and polynomials degrees 2 and 3. 

However, it has the lowest performance among all models in 

terms of capturing the variability in the actual transpiration 

at R2 0.31. Incrocci et al. (2020) explained that PM might 

underestimate calculation because of the calculation of 

aerodynamic resistance (ra) as a function of airspeed in the 

original PM-Eto equation because air movement inside the 

greenhouses is very low in conditions of natural ventilation, 

much lower than in open field. To manage this condition, the 

use of a constant ra value of 295 s/m proposed by Fernandez 

et al. (2011), which is equivalent to a greenhouse air speed 

of 0.7 m/s, was adopted in this study. However, contrary to 

the result of Gallardo et al. (2016), the PM equation still 

underestimated the actual transpiration. Modification in the 

equation, such as including other significant factors such as 

leaf area index (LAI) in the calculation of transpiration (Jo 

and Shin, 2021), may be done to improve the value of aero-

dynamic resistance.

In terms of runtime per epoch while building deep learning 

models, ANN model showed the shortest average runtime 

per epoch which is 2.16 s, followed by LSTM and then GRU 

with average runtime per epoch of 47.96 s and 55.29 s, 

respectively. The architecture of the deep learning models is 

the same, but sequence lengthwas added to the LSTM and 

GRU model which contributed to the complexity of these 

models resulting to longer runtime.

Fig. 3. Comparison between measured and estimated tomato transpiration using various models: Penman-Monteith (A), MLR (B), 4th-degree 

Polynomial (C), ANN (D), LSTM (E), and GRU (F).
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The saved ANN, LSTM and GRU models were used to do 

forecasting for the next 10, 30, 60, 120 and 180 minutes 

using unseen data from May 3, 2023, to May 12, 2023. 

Results of forecasting are shown in Table 3.

ANN did not perform well in forecasting compared to 

GRU and LSTM with RMSE of 4.132 g/min and tremen-

dously increased with increased forecasting time. GRU 

model showed best performance in making a 10, 30, 60, and 

120-minute forecast among all deep learning models with 

RMSE of 0.577 mm/min. 0.402 mm/min, 0.489 g/min and 

0.697 mm/min respectively. LSTM ranked second to GRU 

with RMSE of 1.036 mm/min, 0.919 mm/min, 0.930 

mm/min and 0.755 mm/min respectively. Therefore, for this 

particular study, GRU is recommended for doing 10 to 120 

min forecast but for longer forecasting time (180 min), 

LSTM is the recommended model. However, performance 

of deep learning models in doing forecasting should be 

tested using larger dataset for further verification.

Conclusion

Observed environmental variables which include inside 

air temperature, outside radiation and humidity were found 

to have highest significant correlation with transpiration 

among other variables hence selected as input features for 

model building. Inside air temperature and outside radiation 

are found to be positively correlated with transpiration while 

humidity is negatively correlated with transpiration. Mathe-

matical models such as MLR and Polynomial regression 

(degrees 2, 3 and 4) modes, and deep learning models such 

as ANN, LSTM and GRU models were built. All models 

showed potential in estimating transpiration with R2 values 

ranging from 0.770 to 0.948 and RMSE of 0.495 mm/min to 

1.038 mm/min in testing. Deep learning models were found 

to perform better in estimating transpiration compared to 

mathematical models. Among the deep learning models, 

GRU model and LSTM showed the best performance which 

both have 0.95 R2 and 0.495 mm/min and 0.504 mm/min 

RMSE respectively. The FAO56 PM equation underesti-

mated transpiration with RMSE of 0.598 mm/min, which is 

lower compared to RMSE of MLR and Polynomial degrees 

2 and 3. However, it performs the least (R2 = 0.31) among all 

models in terms of capturing the variability in actual trans-

piration. In terms of forecasting, GRU model performed 

better in doing a 10 to 120-minute forecast followed by 

LSTM while ANN did not perform well in doing longer time 

forecast. Meanwhile, LSTM performed best in forecasting 

longer time step. Performance of deep learning models in 

making forecast should still be done using larger dataset for 

further verification. Therefore, in this study, LSTM and 

GRU models are recommended for estimating transpiration 

of tomato in greenhouse.
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라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 

온실 토마토 증산량 추정

메안 P 안데스1
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적  요. 증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 

대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 

영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하

고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산

량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 

온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀

(MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구

축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770－0.948 범위의 R2 값과 0.495mm/min－

1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU

는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 

각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능

을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. 

FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 

0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 

연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.

추가 주제어 : 토마토 증산 모델, 회귀분석 모델, 인공신경망, LSTM, GRU




