• Title/Summary/Keyword: performance based evaluation

Search Result 6,791, Processing Time 0.035 seconds

Fabrication and Evaluation of Heat Transfer Property of 50 Watts Rated LED Array Module Using Chip-on-board Type Ceramic-metal Hybrid Substrate (Chip-on-board 형 세라믹-메탈 하이브리드 기판을 적용한 50와트급 LED 어레이 모듈의 제조 및 방열특성 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.149-154
    • /
    • 2018
  • This paper describes the fabrication and heat transfer property of 50 watts rated LED array module where multiple chips are mounted on chip-on-board type ceramic-metal hybrid substrate with high heat dissipation property for high power street and anti-explosive lighting system. The high heat transfer ceramic-metal hybrid substrate was fabricated by conformal coating of thick film glass-ceramic and silver pastes to form insulation and conductor layers, using thick film screen printing method on top of the high thermal conductivity aluminum alloy heat-spreading panel, then co-fired at $515^{\circ}C$. A comparative LED array module with the same configuration using epoxy resin based FR-4 PCB with thermalvia type was also fabricated, then the thermal properties were measured with multichannel temperature sensors and thermal resistance measuring system. As a result, the thermal resistance of the ceramic-metal hybrid substrate in the $4{\times}9$ type LEDs array module exhibited about one third to the value as that of FR-4 substrate, implying that at least triple performance of heat transfer property as that of FR-4 substrate was realized.

Evaluation of Strength and Durability of Casein-cemented Sand (카제인으로 고결된 모래의 강도 및 내구성 평가)

  • Park, Sung-Sik;Woo, Seong-Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • About 3% of Casein is included in milk and it accounts for 80% of milk's protein. It has an adhesive property when mixed with calcium hydroxide and sodium hydroxide solutions. It has been usually used to bond woods under dry condition but becomes weak when exposed to moisture. Such weakness is very critical when casein is applied for soil cementation under groundwater condition. Therefore, this study was aimed to protect such weakness by changing or adding certain ingredients of casein adhesive. Two types of cemented specimens were prepared with Nakdong river sand and tested for unconfined compressive strength and durability. Each specimen was mixed with casein or cement. Ingredients of casein binder suggested by the University of Wisconsin, which is called a standard casein recipe, was also prepared. This study tried 6 different types of casein binder recipe. Among them, one with 30% hydroxide calcium increase and 50% hydroxide sodium decrease compared with the standard casein was most effective. Based on the most effective casein recipe, cemented sand with 1-4% of casein ratio was prepared and tested. The unconfined compressive strength and durability index were 6,253kPa and 92% for the specimen with 4% of casein ratio and 1,500kPa and 62% for the one with 8% of cement ratio. Therefore, casein cemented sand showed better performance. In addition, over 3% of casein cemented sand had over 80% durability index.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

Music Teachers' Perceptions of the Music Therapy Curriculum in Special Education Schools (특수학교 음악교과의 운영과 음악치료적 접근에 대한 교사인식)

  • Gu, Sin-Sil;Hwang, Soon-Young
    • Journal of Music and Human Behavior
    • /
    • v.16 no.1
    • /
    • pp.89-117
    • /
    • 2019
  • The purpose of this study was to explore and better understand special education music teachers' perceptions of their music curriculum. For this purpose, we conducted a focus group interview with seven special education music teachers. During the interview, four major themes and 14 sub-themes were identified. The main themes were the following: (a) types of applied activities and the goals of music classes (e.g., activities to be applied in various ways depending on the characteristics of the disability and intended outcome), (b) difficulty in implementing the music curriculum (e.g., lack of fit between textbook and students' chronological ages, lack of time and focus, self-evaluation of performance as a music teacher, (c) therapeutic experiences during music classes (e.g., expectation for positive effects through music therapy, joy of witnessing changes in students, and sense of togetherness), and (d) obstacles to the therapeutic approach of music classes and need for support (e.g., lack of professional knowledge regarding therapeutic approaches and problems with administrators and school environment). Based on these results, problems in implementing the music therapy approach as part of the music curriculum in special education schools are discussed and practical solutions for educators are offered.

Implementation of 3D Road Surface Monitoring System for Vehicle based on Line Laser (선레이저 기반 이동체용 3차원 노면 모니터링 시스템 구현)

  • Choi, Seungho;Kim, Seoyeon;Kim, Taesik;Min, Hong;Jung, Young-Hoon;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.101-107
    • /
    • 2020
  • Road surface measurement is an essential process for quantifying the degree and displacement of roughness in road surface management. For safer road surface management and quick maintenance, it is important to accurately measure the road surface while mounted on a vehicle. In this paper, we propose a sophisticated road surface measurement system that can be measured on a moving vehicle. The proposed road surface measurement system supports more accurate measurement of the road surface by using a high-performance line laser sensor. It is also possible to measure the transverse and longitudinal profile by matching the position information acquired from the RTK, and the velocity adaptive update algorithm allows a manager to monitor in a real-time manner. In order to evaluate the proposed system, the Gocator laser sensor, MRP module, and NVIDIA Xavier processor were mounted on a test mobile and tested on the road surface. Our evaluation results demonstrate that our system measures accurate profile base on the MSE. Our proposed system can be used not only for evaluating the condition of roads but also for evaluating the impact of adjacent excavation.

Field Application and Performance Measurements of Precast Concrete Blocks Developed for Paving Roadways Capable of Solar Power Generation (태양광 도로용 프리캐스트 콘크리트 블록 포장의 현장 적용과 계측)

  • Kim, Bong-Kyun;Lee, Byung-Jae;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.69-76
    • /
    • 2020
  • Global warming is a very important problem as it causes rapid climate change and natural disasters. Therefore, researches related to renewable energy are being actively conducted while promoting policies such as reducing carbon dioxide emission and increasing the proportion of renewable energy. Solar power generation is being applied in urban areas like BIPV as well as existing idle areas outside the city. Therefore, in this study, precast concrete blocks developed for paving roadways capable of solar power generation were designed and constructed. For the evaluation of field applicability for 6 months, skid resistance and block settlement were measured. As a result of the experiment, it was found that skid resistance satisfies the standard of general roadway in Korea, but not the standard of highway. The skid resistance tended to decrease as time passed. In addition, the settlement of the block gradually increased slightly, but it is much smaller than the allowable settlement of the roadway. Therefore, it is necessary to establish a maintenance period and method based on the periodic measurement results in the future.

Evaluation of Ventilation Deficiecy in Elementary, Middle, and High Schools using Monte Carlo Simulation (Monte-Carlo 모의실험을 이용한 초·중·고등학교의 환기부족 평가)

  • Choe, Youngtae;Park, Jinhyeon;Kim, Eunchae;Ryu, Hyoensu;Kim, Dong Jun;Min, Kihong;Jung, Dayoung;Woo, Byung Lyul;Cho, Mansu;Yang, Wonho
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.6
    • /
    • pp.627-635
    • /
    • 2020
  • Objectives: Indoor air quality has become more important aspeople spend most of their times indoors. Since students spend most of their times at home or at school, they are more likely to be exposed to indoor air pollutants. Ventilation in school classrooms can affect health and learning performance. In this study, ventilation deficiency was evaluated in school classrooms using Monte Carlo simulation. Methods: This study used sensor-based monitoring for six months to measure carbon dioxide (CO2) concentrations in classrooms in elementary, middle, and high schools. The volume of the classroom and the number of students were investigated, and the students' body surface area was used to calculate the CO2 emission rate. The distribution of ventilation rates was estimated by measured CO2 concentration and a mass-balance model using Monte Carlo simulation. Results: In the elementary, middle, and high schools, the average CO2 concentrations exceeded 1000 ppm, indicating that the ventilation rates were insufficient. The ventilation rates were deficient from July to August and in December, but showed relatively high ventilation rates in October. Forty-three percent of elementary schools, 56% of middle schools, and 62% of high schools showed insufficient ventilation rates. Conclusions: The ventilation rates calculated in elementary, middle and high schools were found to be quite insufficient. Therefore, proper management is needed to overcome the lack of ventilation and improve air quality.

Efficiency Analysis of Convergence Research R&D Projects by Government-funded Research Institutes: Based on Data Envelopment Analysis (정부출연연구기관의 융합연구 R&D 사업에 대한 효율성 분석: 자료포락분석(Data Envelopment Analysis)에 기초하여)

  • Yuk, Hyoung-Gab;Kang, Dae-Seok;Yu, Myoung-San;Byun, Young-Jo
    • Knowledge Management Research
    • /
    • v.22 no.4
    • /
    • pp.237-260
    • /
    • 2021
  • This study aims to make suggestions for more effective budget utilization and R&D project investment through verification of the efficiency of research results for the government's R&D projects. Efficiency was analyzed using Data Envelope Analysis(DEA) and 'Malmquist Index analysis' for the research results of convergence research projects organized by the National Science and Technology Research Association. The analysis targets were convergence research projects organized by the National Science and Technology Research Association and general entrusted research projects by government-funded research institutes, and dynamic analysis was conducted using DEA and Malmquist Index analysis. As a result of the analysis, the convergence research project showed high efficiency from the static perspective of DEA. On the other hand, from a dynamic perspective through the Malmquist Index analysis method, the efficiency of the general consignment project gradually declined, while the efficiency of the convergence research project improved every year. This suggests that convergence studies have higher results than general studies. Through the results of this study, we intend to present objective standards for performance evaluation of government R&D investment and provide objective implications for rational investment policies and research project planning of research personnel and research funds to improve efficiency for government-funded research institutes.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Evaluation of Segment Lining Fire Resistance Based on PP Fiber Dosage and Air Contents (세그먼트 라이닝의 PP섬유 혼입량과 공기량 변화에 따른 화재저항 특성 평가)

  • Choi, Soon-Wook;Kang, Tae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.469-479
    • /
    • 2021
  • As a material for preventing spalling of concrete, the effectiveness of PP fiber has already been confirmed. However, it is necessary to consider the maximum temperature that occurs during a fire, and to solve the mixing problem and the strength reduction problem that occur depending on the mixing amount. In this study, the fire resistance performance of tunnel segment linings according to the PP fiber content and air volume under the RABT fire scenario was investigated. As a result, no spalling or cross-sectional loss occurred in all test specimens, and when the PP fiber content was small, the maximum temperature was relatively high and the maximum temperature arrival time was also fast. On the other hand, no trend was found for the maximum temperature and arrival time according to the difference in air volume. In the internal temperature distribution results for the PP fiber mixing amount of 0.75, 1.0, 1.5, and 2.0 kg/m3, the results of 0.75 and 1.0 kg/m3 showed similar temperature distribution, and the results of 1.5 and 2.0 kg/m3 were similar. It was confirmed that the internal temperature distribution tends to decrease at the same depth when the amount of PP fiber mixed is large, and it was confirmed that a remarkable difference occurred from the results of 1.0 kg/m3 and 1.5 kg/m3 of PP fiber mixed amounts.