• Title/Summary/Keyword: performance based

Search Result 49,131, Processing Time 0.08 seconds

An Empirical Study on the Success Factors of Digital Classical Music (클래식 음원의 흥행요인에 관한 실증적 연구)

  • Kim, Hye-Su;Jang, Yu-Jin;Limb, Seong-Joon
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.7
    • /
    • pp.227-239
    • /
    • 2022
  • This study conducted an exploratory empirical analysis on the factors affecting the performance of digital classical music based on signaling theory. For this purpose, using the classical weekly chart provided by the music platform Genie, 297 digital music sources that entered the top 100 chart from March 2020 to October 2020 (35 weeks). In this study, as signals that can influence consumers' choice to listen to classical nusic, we set an the artist's award history, artist's broadcast content linkage, taking the top spot in the first classical music chart entry, producing companies' competency, and the popularity of classical music repertoire. The effect of these signals on the chart success of digital classical music was verified subsequently. As a result of the verification, it was found that the artist's broadcast content linkage, taking the top spot in the first classical music chart entry, and the popularity of the classical music repertoire indeed had a positive effect on the chart success of a classical music. On the other hand, the artist's award history and the producing companies' competence did not significantly affect the chart success of digital classical music. This study is the first empirical study on the success factors of digital classical music performed from a business perspective, and is expected to contribute to subsequent studies related to classical music.

Road Extraction from Images Using Semantic Segmentation Algorithm (영상 기반 Semantic Segmentation 알고리즘을 이용한 도로 추출)

  • Oh, Haeng Yeol;Jeon, Seung Bae;Kim, Geon;Jeong, Myeong-Hun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.239-247
    • /
    • 2022
  • Cities are becoming more complex due to rapid industrialization and population growth in modern times. In particular, urban areas are rapidly changing due to housing site development, reconstruction, and demolition. Thus accurate road information is necessary for various purposes, such as High Definition Map for autonomous car driving. In the case of the Republic of Korea, accurate spatial information can be generated by making a map through the existing map production process. However, targeting a large area is limited due to time and money. Road, one of the map elements, is a hub and essential means of transportation that provides many different resources for human civilization. Therefore, it is essential to update road information accurately and quickly. This study uses Semantic Segmentation algorithms Such as LinkNet, D-LinkNet, and NL-LinkNet to extract roads from drone images and then apply hyperparameter optimization to models with the highest performance. As a result, the LinkNet model using pre-trained ResNet-34 as the encoder achieved 85.125 mIoU. Subsequent studies should focus on comparing the results of this study with those of studies using state-of-the-art object detection algorithms or semi-supervised learning-based Semantic Segmentation techniques. The results of this study can be applied to improve the speed of the existing map update process.

Estimation of Onion Leaf Appearance by Beta Distribution (Beta 함수 기반 기온에 따른 양파의 잎 수 증가 예측)

  • Lee, Seong Eun;Moon, Kyung Hwan;Shin, Min Ji;Kim, Byeong Hyeok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.78-82
    • /
    • 2022
  • Phenology determines the timing of crop development, and the timing of phenological events is strongly influenced by the temperature during the growing season. In process-based model, leaf area is simulated dynamically by coupling of morphology and phenology module. Therefore, the prediction of leaf appearance rate and final leaf number affects the performance of whole crop model. The dataset for the model equation was collected from SPA R chambers with five different temperature treatments. Beta distribution function (proposed by Yan and Hunt (1999)) was used for describing the leaf appearance rate as a function of temperature. The optimum temperature and the critical value were estimated to be 26.0℃ and 35.3℃, respectively. For evaluation of the model, the accumulated number of onion leaves observed in a temperature gradient chamber was compared with model estimates. The model estimate is the result of accumulating the daily increase in the number of onion leaves obtained by inputting the daily mean temperature during the growing season into the temperature model. In this study, the coefficient of determination (R2) and RMSE value of the model were 0.95 and 0.89, respectively.

A Study on the Comedic Acting Methods in the Play - Focusing on Character of Kim Seo-Young - (연극 <코트>에 나타난 희극적 연기 방법 연구 - 김서영 역을 중심으로 -)

  • Kim, Seok
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.4
    • /
    • pp.89-100
    • /
    • 2021
  • Comedy has been popular since ancient Greece. In order to visualize comedy more effectively, the actor's acting acts as an important factor. Then active discussion is needed on how actors can actually shape their comedic performance. I would like to approach comedic acting methods, focusing on the character of Kim Seo-young in the play . This researcher played the character of Kim Mi-young, and the characteristics of comedic acting include exaggeration, repetition, fast tempo, changing tone, and exaggerated physical behavior. Comedic acting comes from a dissonance of reactions. This is because unexpected reactions to stimuli can cause audience laughter. Comedic acting is also important in exaggeration and repetition, which must be based on true acting. The fast tempo of the act and the changing tone of the words also affect comedic acting expressions, and the embodiments of 'slapstick' and 'group dance', which are characteristics of farce acting, play an important role in causing audience laughter. In order for these characteristic elements to show comic effects, the actor's true acting must be the basis. What is important in comedic acting is understanding the narrative flow and features of the text and expressing it accurately. Comedic effects can be sufficiently represented if an actor truly expresses his means and faithfully demonstrates what the text requires. It is hoped that such research will help explore various acting arts, the acting education field, and the theater creation process.

Detection of Urban Trees Using YOLOv5 from Aerial Images (항공영상으로부터 YOLOv5를 이용한 도심수목 탐지)

  • Park, Che-Won;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1633-1641
    • /
    • 2022
  • Urban population concentration and indiscriminate development are causing various environmental problems such as air pollution and heat island phenomena, and causing human resources to deteriorate the damage caused by natural disasters. Urban trees have been proposed as a solution to these urban problems, and actually play an important role, such as providing environmental improvement functions. Accordingly, quantitative measurement and analysis of individual trees in urban trees are required to understand the effect of trees on the urban environment. However, the complexity and diversity of urban trees have a problem of lowering the accuracy of single tree detection. Therefore, we conducted a study to effectively detect trees in Dongjak-gu using high-resolution aerial images that enable effective detection of tree objects and You Only Look Once Version 5 (YOLOv5), which showed excellent performance in object detection. Labeling guidelines for the construction of tree AI learning datasets were generated, and box annotation was performed on Dongjak-gu trees based on this. We tested various scale YOLOv5 models from the constructed dataset and adopted the optimal model to perform more efficient urban tree detection, resulting in significant results of mean Average Precision (mAP) 0.663.

Exploratory Study of the Applicability of Kompsat 3/3A Satellite Pan-sharpened Imagery Using Semantic Segmentation Model (아리랑 3/3A호 위성 융합영상의 Semantic Segmentation을 통한 활용 가능성 탐색 연구)

  • Chae, Hanseong;Rhim, Heesoo;Lee, Jaegwan;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1889-1900
    • /
    • 2022
  • Roads are an essential factor in the physical functioning of modern society. The spatial information of the road has much longer update cycle than the traffic situation information, and it is necessary to generate the information faster and more accurately than now. In this study, as a way to achieve that goal, the Pan-sharpening technique was applied to satellite images of Kompsat 3 and 3A to improve spatial resolution. Then, the data were used for road extraction using the semantic segmentation technique, which has been actively researched recently. The acquired Kompsat 3/3A pan-sharpened images were trained by putting it into a U-Net based segmentation model along with Massachusetts road data, and the applicability of the images were evaluated. As a result of training and verification, it was found that the model prediction performance was maintained as long as certain conditions were maintained for the input image. Therefore, it is expected that the possibility of utilizing satellite images such as Kompsat satellite will be even higher if rich training data are constructed by applying a method that minimizes the impact of surrounding environmental conditions affecting models such as shadows and surface conditions.

Anomaly detection and attack type classification mechanism using Extra Tree and ANN (Extra Tree와 ANN을 활용한 이상 탐지 및 공격 유형 분류 메커니즘)

  • Kim, Min-Gyu;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.79-85
    • /
    • 2022
  • Anomaly detection is a method to detect and block abnormal data flows in general users' data sets. The previously known method is a method of detecting and defending an attack based on a signature using the signature of an already known attack. This has the advantage of a low false positive rate, but the problem is that it is very vulnerable to a zero-day vulnerability attack or a modified attack. However, in the case of anomaly detection, there is a disadvantage that the false positive rate is high, but it has the advantage of being able to identify, detect, and block zero-day vulnerability attacks or modified attacks, so related studies are being actively conducted. In this study, we want to deal with these anomaly detection mechanisms, and we propose a new mechanism that performs both anomaly detection and classification while supplementing the high false positive rate mentioned above. In this study, the experiment was conducted with five configurations considering the characteristics of various algorithms. As a result, the model showing the best accuracy was proposed as the result of this study. After detecting an attack by applying the Extra Tree and Three-layer ANN at the same time, the attack type is classified using the Extra Tree for the classified attack data. In this study, verification was performed on the NSL-KDD data set, and the accuracy was 99.8%, 99.1%, 98.9%, 98.7%, and 97.9% for Normal, Dos, Probe, U2R, and R2L, respectively. This configuration showed superior performance compared to other models.

Accuracy evaluation of liver and tumor auto-segmentation in CT images using 2D CoordConv DeepLab V3+ model in radiotherapy

  • An, Na young;Kang, Young-nam
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.341-352
    • /
    • 2022
  • Medical image segmentation is the most important task in radiation therapy. Especially, when segmenting medical images, the liver is one of the most difficult organs to segment because it has various shapes and is close to other organs. Therefore, automatic segmentation of the liver in computed tomography (CT) images is a difficult task. Since tumors also have low contrast in surrounding tissues, and the shape, location, size, and number of tumors vary from patient to patient, accurate tumor segmentation takes a long time. In this study, we propose a method algorithm for automatically segmenting the liver and tumor for this purpose. As an advantage of setting the boundaries of the tumor, the liver and tumor were automatically segmented from the CT image using the 2D CoordConv DeepLab V3+ model using the CoordConv layer. For tumors, only cropped liver images were used to improve accuracy. Additionally, to increase the segmentation accuracy, augmentation, preprocess, loss function, and hyperparameter were used to find optimal values. We compared the CoordConv DeepLab v3+ model using the CoordConv layer and the DeepLab V3+ model without the CoordConv layer to determine whether they affected the segmentation accuracy. The data sets used included 131 hepatic tumor segmentation (LiTS) challenge data sets (100 train sets, 16 validation sets, and 15 test sets). Additional learned data were tested using 15 clinical data from Seoul St. Mary's Hospital. The evaluation was compared with the study results learned with a two-dimensional deep learning-based model. Dice values without the CoordConv layer achieved 0.965 ± 0.01 for liver segmentation and 0.925 ± 0.04 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.927 ± 0.02 for liver division and 0.903 ± 0.05 for tumor division. The dice values using the CoordConv layer achieved 0.989 ± 0.02 for liver segmentation and 0.937 ± 0.07 for tumor segmentation using the LiTS data set. Results from the clinical data set achieved 0.944 ± 0.02 for liver division and 0.916 ± 0.18 for tumor division. The use of CoordConv layers improves the segmentation accuracy. The highest of the most recently published values were 0.960 and 0.749 for liver and tumor division, respectively. However, better performance was achieved with 0.989 and 0.937 results for liver and tumor, which would have been used with the algorithm proposed in this study. The algorithm proposed in this study can play a useful role in treatment planning by improving contouring accuracy and reducing time when segmentation evaluation of liver and tumor is performed. And accurate identification of liver anatomy in medical imaging applications, such as surgical planning, as well as radiotherapy, which can leverage the findings of this study, can help clinical evaluation of the risks and benefits of liver intervention.

A Study on the Analysis of the Congestion Level of Tourist Sites and Visitors Characteristics Using SNS Data (SNS 데이터를 활용한 관광지 혼잡도 및 방문자 특성 분석에 관한 연구)

  • Lee, Sang Hoon;Kim, Su-Yeon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.13-24
    • /
    • 2022
  • SNS has become a very close service to our daily life. As marketing is done through SNS, places often called hot places are created, and users are flocking to these places. However, it is often crowded with a large number of people in a short period of time, resulting in a negative experience for both visitors and service providers. In order to improve this problem, it is necessary to recognize the congestion level, but the method to determine the congestion level in a specific area at an individual level is very limited. Therefore, in this study, we tried to propose a system that can identify the congestion level information and the characteristics of visitors to a specific tourist destination by using the data on the SNS. For this purpose, posting data uploaded by users and image analysis were used, and the performance of the proposed system was verified using the Naver DataLab system. As a result of comparative verification by selecting three places by type of tourist destination, the results calculated in this study and the congestion level provided by DataLab were found to be similar. In particular, this study is meaningful in that it provides a degree of congestion based on real data of users that is not dependent on a specific company or service.

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.