• Title/Summary/Keyword: perfluorinated sulfonic acid

Search Result 12, Processing Time 0.026 seconds

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막)

  • Kang, Seong Eun;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Perfluorinated Sulfonic Acid Ionomer Membranes for Valued Chemical Production (과불소계 술폰화 이오노머막을 이용한 고부가가치 화학품 제조)

  • Shim, Jae Goo;Park, In Kee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.152-158
    • /
    • 2016
  • The Chlor-alkali (CA) membrane cell is a major electrolysis system to produce valued chemicals such as chlorine gas and sodium hydroxide. The CA membrane process has been attracted in the industries, since it has relatively low energy consumption when compared with other CA processes. The key component in CA process is perfluorinated sulfonic acid ionomer membranes, which provide ion-selectivity and barrier properties to produced gases. Unfortunately, there is limited information to determine which factors should be satisfied for CA applications. In this study, the influences of PFSA membranes on CA performances are disclosed. They include ion transport behaviors, gas evolution capability, and chemical/electrochemical resistances under CA operation conditions.

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Toxicity Evaluation of Perfluorinated Compounds Using Daphnia magna (Daphnia magna를 이용한 과불화화합물의 독성평가)

  • Kim, Kyung-Tae;Cho, Jae-Gu;Yoon, Jun-Heon;Lee, Chul-Woo;Choi, Kyung-Hee;Kim, Hyun-Mi;Ryu, Ji-Sung
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.2
    • /
    • pp.153-159
    • /
    • 2010
  • Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the principal chemicals known as perfluoroalkyl acids (PFAs). Despite the widespread use of these compounds, relatively little is known about their fate and effects. The purpose of this study was to determine the toxic effects of PFOS and PFOA on Daphnia magna. In the acute toxicity test, D. magna were exposed for 48 hours at concentrations of 0, 30, 45, 67.5, 101.25 and 151.88 mg/L PFOS, and 0, 100, 160, 225, 337.5 and 506.25 mg/L PFOA, respectively. In the case of chronic toxicity test, D. magna were exposed through water for 21 days at concentrations of 0, 0.375, 0.75, 1.5, 3 and 6 mg/L PFOS, and 0, 1.25, 2.5, 5, 10 and 20 mg/L PFOA, respectively. Acute toxicity was assessed on the basis of immobility, while chronic toxicity was assessed on the basis of fecundity. The acute toxicity test on PFOS and PFOA showed that the values of $EC_{50}$ were 50.90 mg/L and 253.47 mg/L, respectively. In the chronic test, fecundity was reduced significantly at 1.5 mg/L of PFOS and 10 mg/L of PFOA, respectively. These results indicated that PFOS is more toxic to zooplankton than PFOA, and both chemicals have some hazard demonstrates risk for acute or chronic toxicity to freshwater organism.

Perfluorinated Sulfonic Acid based Composite Membranes for Vanadium Redox Flow Battery (바나듐 레독스 흐름 전지를 위한 과불소화 술폰산 복합막)

  • Cho, Kook-Jin;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.21-27
    • /
    • 2016
  • Vanadium redox flow batteries (VRFBs) using the electrolytes containing various vanadium ions in sulfuric acid as supporting solution are one of the energy storage devices in alternatively charging and discharging operation modes. The positive electrolyte contains $V^{5+}/V^{4+}$ and the negative electrolyte $V^{2+}/V^{3+}$ depending on the operation mode. To prevent the mixing of two solutions, proton exchange membranes are mainly used in VRFBs. Nafion 117 could be the most promising candidate due to the strong oxidative property of $V^{5+}$ ion, but causes high crossover of electroactive species to result in a decrease in coulombic efficiency. In this study, the composite membranes using Nafion ionomer and porous polyethylene substrate were prepared to keep good chemical stability and to decrease the cost of membranes, and were compared to the properties and performance of the commercially available electrolyte membrane, Nafion 117. As a result, the water uptake and ionic conductivity of the composite membranes increased as the thickness of the composite membranes increased, but those of Nafion 117 slightly decreased. The permeability of vanadium ions for the composite membranes significantly decreased compared to that for Nafion 117. In a single cell test for the composite membranes, the voltage efficiency decreased and the coulombic efficiency increased, finally resulting in the similar energy efficiency. In conclusion, the less cost of the composite membranes by decreasing 6.4 wt.% of the amount of perfluorinated sulfonic acid polymer due to the introduction of porous substrate and lower vanadium ion permeability to decrease self-discharge were achieved than Nafion 117.

Bioconcentration factor of perfluorochemicals for each aerial part of rice (수도작 작물의 과불소화합물 흡수이행성)

  • Choi, Geun-Hyoung;Lee, Deuk-Yeong;Bae, Ji-Yeon;Rho, Jin-Ho;Moon, Byung-Cheol;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.2
    • /
    • pp.191-194
    • /
    • 2018
  • Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are emerging pollutants in agricultural product, and the residual patterns and the uptake potentials were only studied on several crops, not on rice. The residue level and bioconcentration factor (BCF) of PFOA and PFOS were investigated on the low ($1mg\;kg^{-1}$) and the high contaminated soil ($5mg\;kg^{-1}$) groups. The residue levels in brown rice in the low group and in the high group were 0.002-0.004 and $0.008-0.030mg\;kg^{-1}$ of the each perfluorinated compounds (PFCs), and in the rice husk were $0.035-0.074mg\;kg^{-1}$ and $0.125-0.376mg\;kg^{-1}$ of the each PFCs, respectively. Furthermore, the residues in rice straw were the highest level in the all rice parts both in the groups. The PFOA and PFOS were reached to $3.723mg\;kg^{-1}$ and $7.641mg\;kg^{-1}$, respectively, and the BCF (1.474 and 4.700) as well.

Behavior of perfluorinated compounds in advanced water treatment plant (고도 정수처리장에서의 과불화합물 거동)

  • Lim, Chaeseung;Kim, Hyungjoon;Han, Gaehee;Kim, Ho;Hwang, Yunbin;Kim, Keugtae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Adsorption by granule activated carbon(GAC) is recognized as an efficient method for the removal of perfluorinated compounds(PFCs) in water, while the poor regeneration and exchange cycles of granule active carbon make it difficult to sustain adsorption capacity for PFCs. In this study, the behavior of PFCs in the effluent of wastewater treatment plant (S), the raw water and the effluents of drinking water treatment plants (M1 and M2) located in Nakdong river waegwan watershed was monitored. Optimal regeneration and exchange cycles was also investigated in drinking water treatment plants and lab-scale adsorption tower for stable PFCs removal. The mean effluent concentration of PFCs was 0.044 0.04 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.037 0.011 PFOA g/L, for S wastewater treatment plant, 0.023 0.073 PFHxS g/L, 0.000 0.00 PFOS g/L, 0.013 0.008 PFOA g/L for M1 drinking water treatment plant and 0.023 0.073 PFHxS g/L, 0.000 0.01 PFOS g/L, 0.011 0.009 PFOA g/L for M2 drinking water treatment plant. The adsorption breakthrough behaviors of PFCs in GAC of drinking water treatment plant and lab-scale adsorption tower indicated that reactivating carbon 3 times per year suggested to achieve and maintain good removal of PFASs. Considering the results of mass balance, the adsorption amount of PFCs was improved by using GAC with high-specific surface area (2,500㎡/g), so that the regeneration cycle might be increased from 4 months to 10 months even if powdered activated carbon(PAC) could be alternatives. This study provides useful insights into the removal of PFCs in drinking water treatment plant.

Gas diffusion electrode containing sulfonated poly(ether sulfone) as ionomer for polymer electrolyte fuel cells (Sulfonated poly(ether sulfone)을 함유한 고분자 전해질 연료전지용 기체 확산 전극에 관한 연구)

  • Ryu, Sung Kwan;Choi, Young Woo;Yang, Tae Hyun;Yim, Sung Dae;Kim, Han Sung;Kim, Chang Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • Polymer electrolyte fuel cells (PEFCs) have received a lot of attention as a power source for both stationary and mobile applications due to their attractive feature. In general, the performance of PEFCs is highly affected by the property of the electrodes. A PEFC electrode essentially consists of a gas diffusion layer and a catalyst layer. The gas difusion layer is highly porous and hydrophobicized with PTFE polymer. The catalyst layer usually contains electrocatalyst, proton conducting polymer, even PTFE as additive. Particularly, the proton conducting ionomer helps to increase the catalytic activity at three-phase boundary and catalyst utilization. Futhermore, it helps to retain moisture, resulting in preventing the electrodes from membrane dehydration. The most widely used proton conducting ionomer is perfluorinated sulfonic acid polymer, namely, Nafion from DuPont due to its high proton conductivity and good mechanical property. However, there are great demands for alternative ionomers based on non-fluorinated materials in terms of high temperature availability, environmental adaptability and production cost. In this study, the electrodes with the various content of the sulfonated poly(ether sulfone) ionomer in the catalyst layer were prepared. In addition, we evaluated electrochemical properties of the prepared electrodes containing the various amount of the ionomers by using the cyclic voltammetry and impedance spectroscopy to find an optimal ionomer composition in the catalyst layer.

  • PDF

Increased Chemical Durability by Annealing of SPEEK Membrane for Polymer Electrolyte Fuel Cells (고분자 전해질 연료전지용 SPEEK 막의 어닐링에 의한 화학적 내구성 향상)

  • MI-HWA LEE;DONGGEUN YOO;HYE-RI LEE;IL-CHAI NA;KWONPIL PARK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.673-681
    • /
    • 2023
  • Hydrocarbon-based polymer membranes to replace perfluorinated polymer membranes are being continuously researched. However, hydrocarbon-based membranes have a problem in that they are less durable than fluorine-based membranes. In this study, we sought to compare the annealing effect to improve the durability of sulfonated poly(ether ether ketone) (SPEEK). After membranes formation, thermogravimetric analysis and tensile strength were measured to compare changes in membranes properties due to annealing. After manufacturing the membrane and electrode assembly (MEA), the initial performance and chemical durability was compared with unit cell operation. During the 24-hour annealing process, the strength increased due to the increase in-S-O-S-crosslinking, and the sulfonic acid group decreased, leading to a decrease in I-V performance. By annealing, the hydrogen permeability was reduced to less than 1/10 of that of the nafion membrane, and as a result, open circuit voltage (OCV) and durability was improved. The SPEEK membranes annealed for 24 hours showed higher durability than the nafion 211 membranes of the same thickness.