Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.152

Perfluorinated Sulfonic Acid Ionomer Membranes for Valued Chemical Production  

Shim, Jae Goo (Korea electric power research institute)
Park, In Kee (Department of energy engineering, Dankook University)
Lee, Chang Hyun (Department of energy engineering, Dankook University)
Publication Information
Membrane Journal / v.26, no.2, 2016 , pp. 152-158 More about this Journal
Abstract
The Chlor-alkali (CA) membrane cell is a major electrolysis system to produce valued chemicals such as chlorine gas and sodium hydroxide. The CA membrane process has been attracted in the industries, since it has relatively low energy consumption when compared with other CA processes. The key component in CA process is perfluorinated sulfonic acid ionomer membranes, which provide ion-selectivity and barrier properties to produced gases. Unfortunately, there is limited information to determine which factors should be satisfied for CA applications. In this study, the influences of PFSA membranes on CA performances are disclosed. They include ion transport behaviors, gas evolution capability, and chemical/electrochemical resistances under CA operation conditions.
Keywords
Chlor-alkali technology; membrane process; energy consumption; hydrogen current efficiency;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Bernal, M. Sanchez-Monedero, C. Paredes, and A. Roig, "Carbon mineralization from organic wastes at different composting stages during their incubation with soil", Agric. Ecosyst. Environ., 69, 175 (1998).   DOI
2 J. Chlistunoff, "Advanced chlor-alkali technology", pp. 28-33, NM, USA (2005).
3 R. Chen, V. Trieu, B. Schley, H. Natter, J. Kintrup, A. Bulan, R. Weber, and R. Hempelmann, "Anodic electrocatalytic coatings for electrolytic chlorine production: A review", Z. Phys. Chem. (NF)., 227, 651 (2013).   DOI
4 N. Furuya and H. Aikawa, "Comparative study of oxygen cathodes loaded with Ag and Pt catalysts in chlor-alkali membrane cells", Electrochim. Acta., 45, 4251 (2000).   DOI
5 Y. Kiros, M. Pirjamali, and M. Bursell, "Oxygen reduction electrodes for electrolysis in chlor-alkali cells", Electrochim. Acta., 51, 3346 (2006).   DOI
6 T. Mirzazadeh, F. Mohammadi, M. Soltanieh, and E. Joudaki, "Optimization of caustic current efficiency in a zero-gap advanced chlor-alkali cell with application of genetic algorithm assisted by artificial neural networks", J. Environ. Chem. Eng., 140, 157 (2008).   DOI
7 Y. Takasu, W. Sugimoto, Y. Nishiki, and S. Nakamatsu, "Structural analyses of $RuO_2$-$TiO_2$/Ti and $IrO_2$-$RuO_2$-$TiO_2$/Ti anodes used in industrial chlor- alkali membrane processes", J. Appl. Electrochem., 40, 1789 (2010).   DOI
8 X. Wang, H. Teichgraeber, A. Palazoglu, and N. H. El-Farra, "An economic receding horizon optimization approach for energy management in the chlor-alkali process with hybrid renewable energy generation", J. Process. Control., 24, 1318 (2014).   DOI
9 Z. Yi, C. Kangning, W. Wei, J. Wang, and S. Lee, "Effect of $IrO_2$ loading on $RuO_2$-$IrO_2$-$TiO_2$ anodes: a study of microstructure and working life for the chlorine evolution reaction", Ceram. Int., 33, 1087 (2007).   DOI
10 S. Lakshmanan and T. Murugesan, "The chlor-alkali process: Work in progress", Clean Technol. Environ. Policy, 16, 225 (2014).   DOI
11 A. L. Antozzi, C. Bargioni, L. Iacopetti, M. Musiani, and L. Vazquez-Gomez, "EIS study of the service life of activated cathodes for the hydrogen evolution reaction in the chlor-alkali membrane cell process", Electrochim. Acta., 53, 7410 (2008).   DOI
12 D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016).   DOI
13 L. Lipp, S. Gottesfeld, and J. Chlistunoff, "Peroxide formation in a zero-gap chlor-alkali cell with an oxygen-depolarized cathode", J. Appl. Electrochem., 35, 1015 (2005).   DOI
14 M. Seko, "The ion-exchange membrane, chlor-alkali process", Ind. Eng. Chem. Res., 15, 286 (1976).   DOI
15 I. K. Park and C. H. Lee, "Chlor-alkali membrane process and its prospects", Membr. J., 25, 203 (2015).   DOI
16 H. Choi, O.-H. Kim, M. Kim, H. Choe, Y.-H. Cho, and Y.-E. Sung, "Next-generation polymer-electrolyte-membrane fuel cells using titanium foam as gas diffusion layer", ACS. Appl. Mater. Interfaces,, 6, 7665 (2014).   DOI
17 I. Moussallem, J. Jorissen, U. Kunz, S. Pinnow, and T. Turek, "Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects", J. Appl. Electrochem., 38, 1177 (2008).   DOI
18 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells", Membr. J., 25, 171 (2015).   DOI
19 A. Jalali, F. Mohammadi, and S. Ashrafizadeh, "Effects of process conditions on cell voltage, current efficiency and voltage balance of a chlor-alkali membrane cell", Desalination., 237, 126 (2009).   DOI
20 D. Brandell, J. Karo, A. Liivat, and J. O. Thomas, "Molecular dynamics studies of the Nafion$^{(R)}$, Dow$^{(R)}$ and Aciplex$^{(R)}$ fuel-cell polymer membrane systems", J. Mol. Model., 13, 1039 (2007).   DOI