그래프의 매칭 배제 집합은 그것을 삭제한 그래프가 완전 매칭이나 준완전 매칭을 가지지 않는 에지 집합이다. 매칭 배제수는 모든 매칭 배제 집합의 최소 크기이다. 이 논문에서는 임의의 $m{\geq}4$에 대하여 H-차원 제한된 HL-그래프와 재귀원형군 $G(2^m,4)$의 매칭 배제수는 분지수 m과 같고, 모든 최소 매칭 배제 집합은 한 정점에 인접한 에지 집합임을 보인다.
Using the concept of codes on ordered sets introduced by Brualdi, Graves and Lawrence, we consider perfect codes on the ordinal sum of two ordered sets, the standard ordered sets and the disjoint sum of two chains.
Many academics employ various structures to expand topological space, including the idea of topology, as a result of the importance of topological space in analysis and some applications. One of the most notable of the generalizations was the definition of perfect functions in bitopological spaces, which was presented by Ali.A.Atoom and H.Z.Hdeib. We propose the notion of α- pairwise perfect functions in bitopological spaces and define different types of this concept in this study. Pairwise -T - α- perfect functions, pairwise -α-irr-perfect functions, and pairwise -T - α- irr-perfect functions, are all characterized in addition to pairwise -α-perfect functions. We go through their primary characteristics and show how they interact. Finally, under these functions, we introduce the images and inverse images of certain bitopological features. About these concepts, some product theorems have been discovered.
Let G be a simple undirected graph. A planar graph known as a Halin graph(HG) is characterised by having three connected and pendent vertices of a tree that are connected by an outer cycle. A subset S of V is said to be a dominating set of the graph G if each vertex u that is part of V is dominated by at least one element v that is a part of S. The domination number of a graph is denoted by the γ(G), and it corresponds to the minimum size of a dominating set. A dominating set S is called a secure dominating set if for each v ∈ V\S there exists u ∈ S such that v is adjacent to u and S1 = (S\{v}) ∪ {u} is a dominating set. The minimum cardinality of a secure dominating set of G is equal to the secure domination number γs(G). In this article we found the secure domination number of Halin graph(HG) with perfet k-ary tree and also we determined secure domination of rooted product of special trees.
A new code: LS code was proposed for IMT-2000 CDMA system. The code has special properties during a certain time of interval: 1) perfect autocorrelation 2) perfect crosscorrelation. The perfect autocorrelation means that the autocorrelation has nMaximum for zero time-offset and zero for other times during a certain time. Moreover the perfect crosscorrelation means that the crosscorrelation has zero during a time of interest. In the LAS-DMA system, the LS code is only used in the spreading of data bits in contrast to the conventional CDMA system. Therefore the LS code pair setting and allocation order should be dealt with carefully considering the special properties of LS code. This paper is intended as an investigation of the setting LS code pair and the sequential allocation method. Firstly, the optimum LS code pair set is proposed in order to minimize PAPR. Secondly, the sequential allocation method is studied to either minimize PAPR or expand IFW.
본 연구는 모든 수요분석이 자료수집과 분석전에 완전대체성과 상품묶음을 사전적으로 가정하고 있으며, 일반적인 수요모형에서 수요함수 자체가 존재하지 않음을 주목하고 한계가치함수체계에서 완전대체성의 제약조건을 이론적으로 도출하였다. 그리고 완전대체성이 사전적인 제약으로 부과될 경우 수집된 자료와 일관되지 않음으로써 수요분석을 어렵게 할 경우 파레토의 계약곡선처럼 정보계약곡선을 이용하여 완전대체성의 정도를 조절할 수 있으며, 그 결과 도출되는 정보를 이용하여 상품묶음의 정도를 파악할 수 있음을 보여준다. 실증적 분석의 예로서 한국어류시장의 주요어종들간에 한계가치의 변화를 통하여 대체성의 정도를 파악하고 상품묶음을 할 수 있음도 보여준다. 비록 형태에 따른 어종이 다르더라도 소비자의 눈에서 보는 대체정도는 다른 것으로 볼 수 있으며, 그러한 시각에서 대체성과 상품묶음이 이루어질 수 있음도 보여준다. 이렇게 정보계약곡선을 따라 제약의 강도가 달라질 때 경제학적으로 합리적인 탄력성의 값을 택하여 후생분석으로 확장할 수 있음을 말해준다. 아직 이러한 연구가 초기단계이므로 많은 미래의 연구와 활용에 기여할 수 있을 것이다.
For a field K, a square-free monomial ideal I of K[$x_1$, . . ., $x_n$] is called an f-ideal, if both its facet complex and Stanley-Reisner complex have the same f-vector. Furthermore, for an f-ideal I, if all monomials in the minimal generating set G(I) have the same degree d, then I is called an $(n, d)^{th}$ f-ideal. In this paper, we prove the existence of $(n, d)^{th}$ f-ideal for $d{\geq}2$ and $n{\geq}d+2$, and we also give some algorithms to construct $(n, d)^{th}$ f-ideals.
The asymptotic behavior and distribution for quantiles estimators using ranked samples are introduced. Applications of quantiles estimation on finding the normal ranges (2.5% and 97.5% percentiles) and the median of some medical characteristics and on finding the Hodges-Lehmann estimate are discussed. The conclusion of this study is, whenever perfect ranking is possible, the relative efficiency of quantiles estimation using ranked samples relative to SRS is high. This may translates to large savings in cost and time. Also, this conclusion holds even if the ranking is not perfect. Computer simulation results are given and real data from lows 65+ study is used to illustrate the method.
The sub-Nyquist nonuniform sampling (SNNS) and the perfect reconstruction (PR) formula are proposed for the development of a systematic method to obtain minimal representation of a speech signal. In the proposed method, the instantaneous sampling frequency (ISF) varies, depending on the least upper boundary of spectral support of a speech signal in time-frequency domain (TFD). The definition of the instantaneous bandwidth (IB), which determines the ISF and is used for generating the set of samples that represent continuous-time signals perfectly, is given. Also, the spectral characteristics of the sampled data generated by the sub-Nyquist nonuniform sampling method is analyzed. The proposed method doesn't generate the redundant samples due to the time-varying property of the instantaneous bandwidth of a speech signal.
Gear tooth micro-geometry modifications include the intentional removal of material from the gear teeth flanks, so that the shape is no longer a perfect involute. If the gear shapes are perfect, then the gear tooth meshing is better, therefore the gears will transmit input torque in a more efficient manner without the generation of high frequency engine fluctuation noise. In this paper, we study tooth micro-geometry optimization of rear gear set in 2 speed planetary gear reducers. Analysis revealed problems which are need of modification. Based on the results, tooth micro-geometry was used to deal with load distributions on the rear gear set.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.