• Title/Summary/Keyword: peptide substrate

Search Result 137, Processing Time 0.031 seconds

Development of Substrate for Carboxypeptidase-B by Employing Thiaarginine Peptides

  • 홍남주;박영애;손기남
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.189-193
    • /
    • 1998
  • Carboxypeptidase-B (CPB) is involved in the biosynthesis of numerous peptide hormones and neurotransmitters. CPB catalyzes hydrolysis of the basic amino acids from the C-terminal position in polypeptides during posttranslational prohormonal processing. Various peptides containing thiaarginine residue at C-terminal position were synthesized and tested for their hydrolysis by CPB. A colorimetric assay, employing Ellman's reagent to detect the thioguanidine released upon hydrolysis of the dipeptide substrates, showed that thiaarginine is a suitable mimetic for arginine. Kinetic studies on the four substrates, Z-L-Ala-DL-thia-Lys, Z-L-Ala-DL-thia-Arg, Z-L-Lys-DL-thia-Arg, and Z-L-Lys(Boc)-DL-thia-Arg, gave Km (mM) of 0.66, 5.08, 0.024, and 0.006 and kcat (min-1) of 340, 5200, 151 and 335, respectively.

Kinetic Study of Thermolysin-Catalyzed Synthesis of N-(Benzyloxycarbonyl)-L-Phenylalanyl-L-Leucine Ethyl Ester in an Ethyl Acetate Saturated Aqueous System

  • Nam, Kwang-Ho;Lee, Chang-Kyung;Jeong, Seung-Weon;Chi, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.649-655
    • /
    • 2001
  • The kinetics of the thermolysin-catalyzed synthesis of N-(benzyloxycarbonyl)-L-phenylalanyl-L-leucine ethyl ester (Z-Phe-LeuOEt) from N-(benzyloxycarbonyl)-L-phyenylalanine (Z-Phe) and L-leucine ethyl ester (LeuOEt) in an ethyl acetate saturated aqueous system in a batch operation were studied. The kinetics for the synthesis of Z-Phe-LeuOEt were expressed using a rate equation for the rapid equilibrium random bireactant mechanism. The four kinetic constants involved in the rate equation were determined numerically by the quasi-Newton method so as to fit the calculated results with the experimental data. Within the pH and temperature range examined, the $K_{cat}$ value for the synthesis of Z-Phe-LeuOEt reached a maximum at pH 7.0 and $45^{\circ}C$, whereas the affinity between Z-Phe and thermolysin reached a maximum at pH 6.0 adn $40^{\circ}C$. The inhibitory effect of Z-Phe on the condensation reaction decreased as the pH and temperature decreased. In contrast, they affinity between LeuOEt and thermolysin remained unchanged within the pH and temperature range examined. Therefore, it was concluded that the protonation state of the carboxyl groups. of Z-Phe was more imprtant than that of the amono groups of LeuOEt for the synthesis of Z-Phe-LeuOEt in the present solvent system. The equilibrium yield at pH 6.0 and $30^{\circ}C$ was 8% higher than that at pH 7.0 and $40^{\circ}C$, although the rate was much slower. This result suggested that the affinity between the enzyme and the substrate rather than the overall rate was a more important factor affecting the equilibrium yield, when the peptide synthesis was carried out in a product-precipitation system.

  • PDF

Ribosomal Crystallography: Peptide Bond Formation, Chaperone Assistance and Antibiotics Activity

  • Yonath, Ada
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2005
  • The peptidyl transferase center (PTC) is located in a protein free environment, thus confirming that the ribosome is a ribozyme. This arched void has dimensions suitable for accommodating the 3'ends of the A-and the P-site tRNAs, and is situated within a universal sizable symmetry-related region that connects all ribosomal functional centers involved in amino-acid polymerization. The linkage between the elaborate PTC architecture and the A-site tRNA position revealed that the A-to P-site passage of the tRNA 3'end is performed by a rotatory motion, which leads to stereochemistry suitable for peptide bond formation and for substrate mediated catalysis, thus suggesting that the PTC evolved by genefusion. Adjacent to the PTC is the entrance of the protein exit tunnel, shown to play active roles in sequence-specific gating of nascent chains and in responding to cellular signals. This tunnel also provides a site that may be exploited for local co-translational folding and seems to assist in nascent chain trafficking into the hydrophobic space formed by the first bacterial chaperone, the trigger factor. Many antibiotics target ribosomes. Although the ribosome is highly conserved, subtle sequence and/or conformational variations enable drug selectivity, thus facilitating clinical usage. Comparisons of high-resolution structures of complexes of antibiotics bound to ribosomes from eubacteria resembling pathogens, to an archaeon that shares properties with eukaryotes and to its mutant that allows antibiotics binding, demonstrated the unambiguous difference between mere binding and therapeutical effectiveness. The observed variability in antibiotics inhibitory modes, accompanied by the elucidation of the structural basis to antibiotics mechanism justifies expectations for structural based improved properties of existing compounds as well as for the development of novel drugs.

Characterization of an Extracellular Xylanase in Paenibacillus sp. HY-8 Isolated from an Herbivorous Longicorn Beetle

  • Heo, Sun-Yeon;Kwak, Jang-Yul;Oh, Hyun-Woo;Park, Doo-Sang;Bae, Kyung-Sook;Shin, Dong-Ha;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1753-1759
    • /
    • 2006
  • Paenibacillus sp. HY-8 isolated from the digestive tracts of the longicorn beetle, Moechotypa diphysis, produced an extracellular endoxylanase with a molecular weight of 20 kDa estimated by SDS-PAGE. The xylanase was purified to near electrophoretic homogeneity from the culture supernatant after ammonium sulfate precipitation, gel filtration, and ionexchange chromatography. The purified xylanase exhibited the highest activities at pH 6.0 and $50^{\circ}C$. The $K_m\;and\;V_{max}$ values were 7.2 mg/ml and 16.3 U/mg, respectively, for birchwood xylan as the substrate. Nucleotide sequence of the PCR-cloned gene was determined to have the open reading frame encoding a polypeptide of 212 amino acids. The N-terminal amino acid sequence and the nucleotide sequence analyses predicted that the precursor xylanase contained a signal peptide composed of 28 amino acids and a catalytically active 19.9-kDa peptide fragment. The deduced amino acid sequence shared extensive similarity with those of the glycoside hydrolase family 11 of xylanases from other bacteria. The predicted amino acid sequence contained two glutamate residues, previously identified as essential and conserved for active sites in other xylanases of the glycoside hydrolase family 11.

Affinity Labeling of E. coli GTP Cyclohydrolase I by a Dialdehyde Derivative of Guanosine Triphosphate

  • Ahn, Chi-Young;Park, Sang-Ick;Kim, Ju-Myeong;Yim, Jeong-Bin
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.72-78
    • /
    • 1995
  • Time-dependent inactivation of E. coli GTP cyclohydrolase I with a 2',3'-dialdehyde derivative of GTP (oGTP) was directed to the active site of the enzyme, and was dependent on the concentration of oGTP. The kinetics of inactivation were biphasic with a rapid reaction occurring immediately upon exposure of the enzyme to oGTP followed by a slow rate of inactivation. The $K_i$ value of oGTP for the enzyme was 0.25 mM. Inactivation was prevented by preincubation of the enzyme with GTP, the substrate of the enzyme. At 100% inactivation, 2.3 mol of [8.5'-$^3H$]oGTP were bound per each enzyme subunit, which consists of two identical polypeptides. The active site residue which reacted with the affinity label was lysine. oGTP interacted selectively with the ${\varepsilon}$-amino group of lysine in the GTP-binding site to form a morpholine-like structure which was stable without sodium borohydride treatment. However, triphosphate group was eliminated during the hydrolysis step. To identify the active site of the enzyme, [8.5'-$^3H$]oGTP-labeled enzyme was cleaved by endoproteinase Lys-C, and the $^3H$-labeled peptide was purified by HPLC. The amino acid sequence of the active site peptide was Pro-Ser-Leu-Ser-Lys, which corresponds to the aminoterminal sequence of the enzyme.

  • PDF

Characterization of Recombinant PolyG-Specific Lyase from a Marine Bacterium, Streptomyces sp. M3 (해양세균 Streptomyces sp. M3로 부터 얻은 재조합 polyG-specific lyase의 특성)

  • Kim, Hee-Sook
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1582-1588
    • /
    • 2010
  • A new alginate lyase gene of marine bacterium Streptomyces sp. M3 had been previously cloned in pColdI vector and transformed into E. coli BL21 (DE3). In this study, M3 lyase protein without signal peptide was overexpressed by induction with IPTG and purified with Ni-Sepharose affinity chromatography. The absorbance at 235 nm of the reaction mixture and TLC analysis showed that M3 alginate lyase was a polyG-specific lyase. When M3 lyase was assayed with substrate for 10 min, optimum pH and optimum temperature were pH 9 and $60^{\circ}C$. For the effect of 1mM metal ion on M3 lyase activity, $Ca^{++}$ and $Mn^{++}$ ions increased the alginate degrading activity by two-fold, whereas $Hg^{++}$ and $Zn^{++}$ ions inhibited the lyase activity completely. $Mg^{++}$, $Co^{++}$, $Na^+$, $K^+$, and $Ba^{++}$ did not show any strong effects on alginate lyase activity.

Casein Phosphopeptide (CPP)-Producing Activity and Proteolytic Ability by Some Lactic Acid Bacteria (유산균의 Casein Phosphopeptide(CPP) 생산 및 단백질 분해 활성)

  • Cho, Yoon-Hee;Oh, Se-Jong
    • Food Science of Animal Resources
    • /
    • v.30 no.3
    • /
    • pp.443-448
    • /
    • 2010
  • Casein phosphopeptide (CPP) enhances calcium absorption in humans. Lactic acid bacteria (LAB) are capable of synthesis of cell-surface proteinase, which can hydrolyze milk protein and release several types of peptides in the medium. This study was conducted to characterize proteinase of LAB and to evaluate the CPP production from bovine milk. The content of CPP of milk produced by cell-free extract of LAB was determined based on the quantity of decomposed peptide from casein using the O-phthaldialdehyde (OPA) method. The proteolytic activity of LAB was assayed using fluorescein isothiocyanate (FITC)-labeled casein. Casein appeared to be a better substrate than whey proteins for extracellular proteinases of LAB. During fermentation, milk proteins were hydrolyzed by extracellular proteinase of LAB, resulting in an increase in the amount of free $NH_3$ groups. Overall, the results presented here indicate that CPP produced by LAB may be a promising material for novel applications in the dairy industry.

Effects of Halophilic Peptide Fusion on Solubility, Stability, and Catalytic Performance of $\small{D}$-Phenylglycine Aminotransferase

  • Javid, Hossein;Jomrit, Juntratip;Chantarasiri, Aiya;Isarangkul, Duangnate;Meevootisom, Vithaya;Wiyakrutta, Suthep
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.597-604
    • /
    • 2014
  • $\small{D}$-Phenylglycine aminotransferase ($\small{D}$-PhgAT) from Pseudomonas stutzeri ST-201 is useful for enzymatic synthesis of enantiomerically pure $\small{D}$-phenylglycine. However, its low protein solubility prevents its application at high substrate concentration. With an aim to increase the protein solubility, the N-terminus of $\small{D}$-PhgAT was genetically fused with short peptides ($A_1$ ${\alpha}$-helix, $A_2$ ${\alpha}$-helix, and ALAL, which is a hybrid of $A_1$ and $A_2$) from a ferredoxin enzyme of a halophilic archaeon, Halobacterium salinarum. The fused enzymes $A_1$-$\small{D}$-PhgAT, $A_2$-$\small{D}$-PhgAT, and ALAL-$\small{D}$-PhgAT displayed a reduced pI and increased in solubility by 6.1-, 5.3-, and 8.1- fold in TEMP (pH 7.6) storage, respectively, and 5-, 4.5-, and 5.9-fold in CAPSO (pH 9.5) reaction buffers, respectively, compared with the wild-type enzyme (WT-$\small{D}$-PhgAT). In addition, all the fused $\small{D}$-PhgAT displayed higher enzymatic reaction rates than the WT-DPhgAT at all concentrations of L-glutamate monosodium salt used. The highest rate, $23.82{\pm}1.47$ mM/h, was that obtained from having ALAL-$\small{D}$-PhgAT reacted with 1,500 mM of the substrate. Moreover, the halophilic fusion significantly increased the tolerance of $\small{D}$-PhgAT in the presence of NaCl and KCl, being slightly in favor of KCl, where under the same condition at 3.5 M NaCl or KCl all halophilic-fused variants showed higher activity than WT-$\small{D}$-PhgAT.

Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis (고압처리와 단백질 분해효소를 이용한 연산오계 다리육 펩타이드 생산 최적화 및 특성 분석)

  • Ha, Yoo-jin;Kim, A-Yeon;Yoo, Sun-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.182-191
    • /
    • 2016
  • The purpose of this research was the optimization of protein hydrolysate production using a commercial enzyme bromelain 1200 derived from the leg of Yeonsan Ogae by response surface methodology. Yeonsan Ogae has long been known as supporting health and high efficacy treatment. In recent days, as the efficacy of functional peptides becomes more known, optimization of oligopeptide production and its characteristics from Ogae leg meat has been performed. Response surface methodology was performed for optimization of enzyme hydrolysis. The process was varied in pressure (30 to 100 MPa), time (1 to 3 h), and substrate concentration (10 to 30%). The degree of hydrolysis, amino acids, and molecular weight of products were analyzed. The optimum conditions were determined to be a pressure of 100 Mpa, time of 3 h, and substrate concentration of 20%. Under optimized conditions, degree of hydrolysis was 34.10%. The average molecular weight of protein hydrolysates was less than 1,000 Da. Major amino acids were leucine, lysine, alanine, glutamic acid, and phenylalanine.

Anti-Wrinkle Effect of Schizandra chinensis Baillon Fermented with Lactobacillus plantarum (오미자 유산균 발효물의 주름개선 효과)

  • Lee, Jung Hee;Kim, Jong Im;Choi, Hwa Jung;Lee, Jung Hyun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.4
    • /
    • pp.365-371
    • /
    • 2014
  • To identify new active anti-wrinkle ingredients, this study investigated the anti-wrinkle effects of Schizandra chinensis Baillon fermented with Lactobacillus plantarum (SCF) by assessment of cytotoxicity of human dermal fibroblast, collagen biosynthesis, matrix metalloproteinase-I (MMP-1) inhibition and elastase inhibition. S. chinensis was fermented with L. rhamnosus for 1 day at $37^{\circ}C$. The cytotoxicity of SCF was evaluated by a cytopathic effect reduction method. Effects on collagen biosynthesis and matrix metalloproteinase-I (MMP-1) of SCF were evaluated by previous reported method using procollagen type-IC peptide EIA kit and Matrix Metalloproteinase-1 Biotrack activity Assay Kit, respectively. Elastase inhibition assay was conducted by reaction of enzyme and substrate using N-Suc-$(Ala)_3$-nitroanilide as the substrate. As the results, SCF didn't show cytotoxicity against human dermal fibroblast at concentration of $100{\mu}g/mL$. Also, SCF was increased collagen synthesis and showed inhibitory effect of MMP-1 (p < 0.05). In the elastase inhibition assay, the $IC_{50}$ of SCF was $36.4{\mu}g/mL$. Therefore, our results indicated that SCF possesses anti-wrinkle effects and can be used practically for anti-wrinkle care of skin.